Skip to content
Snippets Groups Projects
power.py 28.1 KiB
Newer Older
Daniel Johnson's avatar
Daniel Johnson committed
#!/usr/bin/env python
Daniel Johnson's avatar
Daniel Johnson committed

Roland Haas's avatar
Roland Haas committed
# Copyright (c) 2017 The Board of Trustees of the University of Illinois
# All rights reserved.
#
# Developed by: Daniel Johnson, E. A. Huerta, Roland Haas
#               NCSA Gravity Group
#               National Center for Supercomputing Applications
#               University of Illinois at Urbana-Champaign
#               http://gravity.ncsa.illinois.edu/
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to
# deal with the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
# sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimers.
#
# Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimers in the documentation
# and/or other materials provided with the distribution.
#
# Neither the names of the National Center for Supercomputing Applications,
# University of Illinois at Urbana-Champaign, nor the names of its
# contributors may be used to endorse or promote products derived from this
# Software without specific prior written permission.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# WITH THE SOFTWARE.

Daniel Johnson's avatar
Daniel Johnson committed
# Based off of SimulationTools Mathematica Package
# http://www.simulationtools.org/

import numpy as np
import glob
import os
import h5py
Daniel Johnson's avatar
Daniel Johnson committed
import math
import sys
import warnings
import scipy.optimize
import scipy.interpolate
import scipy.integrate
Brockton Brendal's avatar
Brockton Brendal committed
import argparse
import configparser
Daniel Johnson's avatar
Daniel Johnson committed

#-----Function Definitions-----#

def joinDsets(dsets):
        """joints multiple datasets which each have a
        time like first column, eg iteration number of
        time. Removes overlapping segments, keeping the
        last segment.
    
        dsets = iterable of 2d array like objects with data"""
        # joins multiple datasets of which the first column is assumed to be "time"
        if(not dsets):
            return None
        length = 0
        for d in dsets:
            length += len(d)
        newshape = list(dsets[0].shape)
        newshape[0] = length
        dset = np.empty(shape=newshape, dtype=dsets[0].dtype)
        usedlength = 0
        for d in dsets:
            insertpointidx = np.where(dset[0:usedlength,0] >= d[0,0])
            if(insertpointidx[0].size):
                insertpoint = insertpointidx[0][0]
            else:
                insertpoint = usedlength
            newlength = insertpoint+len(d)
            dset[insertpoint:newlength] = d
            usedlength = newlength
        return dset[0:usedlength]
Daniel Johnson's avatar
Daniel Johnson committed

def loadHDF5Series(nameglob, series):
        """load HDF5 timeseries data and concatenate the content of multiple files
    
        nameglob = a shell glob that matches all files to be loaded,
        files are sorted alphabetically
        series = HDF5 dataset name of dataset to load from files"""
        dsets = list()
        for fn in sorted(glob.glob(nameglob)):
            fh = h5py.File(fn, "r")
            dsets.append(fh[series])
        return joinDsets(dsets)
#Convert radial to tortoise coordinates
def RadialToTortoise(r, M):
    """
    Convert the radial coordinate to the tortoise coordinate

    r = radial coordinate
    M = ADMMass used to convert coordinate
    return = tortoise coordinate value
    """
    return r + 2. * M * math.log( r / (2. * M) - 1.)

#Convert modified psi4 to strain
def psi4ToStrain(mp_psi4, f0):
    """
    Convert the input mp_psi4 data to the strain of the gravitational wave
    
    mp_psi4 = Weyl scalar result from simulation
    f0 = cutoff frequency
    return = strain (h) of the gravitational wave
    """
    #TODO: Check for uniform spacing in time
    t0 = mp_psi4[:, 0]
    list_len = len(t0)
    complexPsi = mp_psi4[:, 1]+1.j*mp_psi4[:, 2]

    freq, psif = myFourierTransform(t0, complexPsi)
    dhf = ffi(freq, psif, f0)
    hf = ffi(freq, dhf, f0)

    time, h = myFourierTransformInverse(freq, hf, t0[0])
    hTable = np.column_stack((time, h))
    return hTable

#Fixed frequency integration
# See https://arxiv.org/abs/1508.07250 for method
def ffi(freq, data, f0):
    """
    Integrates the data according to the input frequency and cutoff frequency

    freq = fourier transform frequency
    data = input on which ffi is performed
    f0 = cutoff frequency
    """
    f1 = f0/(2*math.pi)
    fs = freq
    gs = data
    mask1 = (np.sign((fs/f1) - 1) + 1)/2.
    mask2 = (np.sign((-fs/f1) - 1) + 1)/2.
    mask = 1 - (1 - mask1) * (1 - mask2)
    fs2 = mask * fs + (1-mask) * f1 * np.sign(fs - np.finfo(float).eps)
    new_gs = gs/(2*math.pi*1.j*fs2)
    return new_gs

#Fourier Transform
def myFourierTransform(t0, complexPsi):
    """
    Transforms the complexPsi data to frequency space

    t0 = time data points
    complexPsi = data points of Psi to be transformed
    """
    psif = np.fft.fft(complexPsi, norm="ortho")
    l = len(complexPsi)
    n = int(math.floor(l/2.))
    newpsif = psif[l-n:]
    newpsif = np.append(newpsif, psif[:l-n])
    T = np.amin(np.diff(t0))*l
    freq = range(-n, l-n)/T
    return freq, newpsif

#Inverse Fourier Transform
def myFourierTransformInverse(freq, hf, t0):
    l = len(hf)
    n = int(math.floor(l/2.))
    newhf = hf[n:]
    newhf = np.append(newhf, hf[:n])
    amp = np.fft.ifft(newhf, norm="ortho")
    df = np.amin(np.diff(freq))
    time = t0 + range(0, l)/(df*l)
    return time, amp

def angular_momentum(x, q, m, chi1, chi2, LInitNR):
    eta = q/(1.+q)**2
    m1 = (1.+math.sqrt(1.-4.*eta))/2.
    m2 = m - m1
    S1 = m1**2. * chi1
    S2 = m2**2. * chi2
    Sl = S1+S2
    Sigmal = S2/m2 - S1/m1
    DeltaM = m1 - m2
    mu = eta
    nu = eta
    GammaE = 0.5772156649;
    e4 = -(123671./5760.)+(9037.* math.pi**2.)/1536.+(896.*GammaE)/15.+(-(498449./3456.)+(3157.*math.pi**2.)/576.)*nu+(301. * nu**2.)/1728.+(77.*nu**3.)/31104.+(1792. *math.log(2.))/15.
    e5 = -55.13
    j4 = -(5./7.)*e4+64./35.
    j5 = -(2./3.)*e5-4988./945.-656./135. * eta;
    CapitalDelta = (1.-4.*eta)**0.5

    # RH: expression was originally provided by EAH
    # TODO: get referecen for this from EAH
    l = (eta/x**(1./2.)*(
        1. +
        x*(3./2. + 1./6.*eta) + 
        x**2. *(27./8. - 19./8.*eta + 1./24.*eta**2.) + 
        x**3. *(135./16. + (-6889./144. + 41./24. * math.pi**2.)*eta + 31./24.*eta**2. + 7./1296.*eta**3.) + 
        x**4. *((2835./128.) + eta*j4 - (64.*eta*math.log(x)/3.))+ 
        x**5. *((15309./256.) + eta*j5 + ((9976./105.) + (1312.*eta/15.))*eta*math.log(x))+
        x**(3./2.)*(-(35./6.)*Sl - 5./2.*DeltaM* Sigmal) + 
        x**(5./2.)*((-(77./8.) + 427./72.*eta)*Sl + DeltaM* (-(21./8.) + 35./12.*eta)*Sigmal) + 
        x**(7./2.)*((-(405./16.) + 1101./16.*eta - 29./16.*eta**2.)*Sl + DeltaM*(-(81./16.) + 117./4.*eta - 15./16.*eta**2.)*Sigmal) + 
        (1./2. + (m1 - m2)/2. - eta)* chi1**2. * x**2. +
        (1./2. + (m2 - m1)/2. - eta)* chi2**2. * x**2. + 
        2.*eta*chi1*chi2*x**2. +
        ((13.*chi1**2.)/9. +
        (13.*CapitalDelta*chi1**2.)/9. -
        (55.*nu*chi1**2.)/9. - 
        29./9.*CapitalDelta*nu*chi1**2. + 
        (14.*nu**2. *chi1**2.)/9. +
        (7.*nu*chi1*chi2)/3. +
        17./18.* nu**2. * chi1 * chi2 + 
        (13.* chi2**2.)/9. -
        (13.*CapitalDelta*chi2**2.)/9. -
        (55.*nu*chi2**2.)/9. +
        29./9.*CapitalDelta*nu*chi2**2. +
        (14.*nu**2. * chi2**2.)/9.)
        * x**3.))
    return l - LInitNR

def getFinalSpinFromQLM(sim_path):
    mass_path = sorted(glob.glob(os.path.join(sim_path, "output-????", "*", "quasilocalmeasures-qlm_scalars..asc")))
    A_val = np.loadtxt(mass_path[-1])     ## For mass calculation
    M_final = A_val[:,58][-1]
    Sz_final = A_val[:,37][-1]
    a_final = Sz_final / M_final
    return a_final, M_final

def getADMMassFromTwoPunctureBBH(meta_filename):
    """
    Determine cutoff frequency of simulation

    meta_filename = path to TwoPunctures.bbh
    return = initial ADM mass of system
    """

    config = configparser.ConfigParser()
    config.read(meta_filename)

    ADMmass = float(config['metadata']['initial-ADM-energy'])

    return ADMmass

def getCutoffFrequencyFromTwoPuncturesBBH(meta_filename):
    """
    Determine cutoff frequency of simulation

    meta_filename = path to TwoPunctures.bbh
    return = cutoff frequency
    """

    config = configparser.ConfigParser()
    config.read(meta_filename)

    position1x = float(config['metadata']['initial-bh-position1x'])
    position1y = float(config['metadata']['initial-bh-position1y'])
    position1z = float(config['metadata']['initial-bh-position1z'])
    position2x = float(config['metadata']['initial-bh-position2x'])
    position2y = float(config['metadata']['initial-bh-position2y'])
    position2z = float(config['metadata']['initial-bh-position2z'])
    momentum1x = float(config['metadata']['initial-bh-momentum1x'])
    momentum1y = float(config['metadata']['initial-bh-momentum1y'])
    momentum1z = float(config['metadata']['initial-bh-momentum1z'])
    momentum2x = float(config['metadata']['initial-bh-momentum2x'])
    momentum2y = float(config['metadata']['initial-bh-momentum2y'])
    momentum2z = float(config['metadata']['initial-bh-momentum2z'])
    spin1x = float(config['metadata']['initial-bh-spin1x'])
    spin1y = float(config['metadata']['initial-bh-spin1y'])
    spin1z = float(config['metadata']['initial-bh-spin1z'])
    spin2x = float(config['metadata']['initial-bh-spin2x'])
    spin2y = float(config['metadata']['initial-bh-spin2y'])
    spin2z = float(config['metadata']['initial-bh-spin2z'])
    mass1 = float(config['metadata']['initial-bh-puncture-adm-mass1'])
    mass2 = float(config['metadata']['initial-bh-puncture-adm-mass2'])

    angularmomentum1x = position1y * momentum1z - momentum1z * momentum1y
    angularmomentum1y = position1z * momentum1x - momentum1x * momentum1z
    angularmomentum1z = position1x * momentum1y - momentum1y * momentum1x

    angularmomentum2x = position2y * momentum2z - momentum2z * momentum2y
    angularmomentum2y = position2z * momentum2x - momentum2x * momentum2z
    angularmomentum2z = position2x * momentum2y - momentum2y * momentum2x

    angularmomentumx = angularmomentum1x + angularmomentum2x
    angularmomentumy = angularmomentum1y + angularmomentum2y
    angularmomentumz = angularmomentum1z + angularmomentum2z

    LInitNR = math.sqrt(angularmomentumx**2 + angularmomentumy**2 + angularmomentumz**2)
    S1 = math.sqrt(spin1x**2 + spin1y**2 + spin1z**2)
    S2 = math.sqrt(spin2x**2 + spin2y**2 + spin2z**2)

    M = mass1+mass2
    q = mass1/mass2
    chi1 = S1/mass1**2
    chi2 = S2/mass2**2
    # .014 is the initial guess for cutoff frequency
    omOrbPN = scipy.optimize.fsolve(angular_momentum, .014, (q, M, chi1, chi2, LInitNR))[0]
    omOrbPN = omOrbPN**(3./2.)
    omGWPN = 2. * omOrbPN
    omCutoff = 0.75 * omGWPN
    return omCutoff

def getModesInFile(sim_path):
    """
    Find all modes and radii in file.

    sim_path = path to simulation main directory
    return = radii, modes
    """

    fn = sorted(glob.glob(sim_path+"/output-????/*/mp_[Pp]si4.h5"))[0]
    with h5py.File(fn, "r") as fh:
        radii = set()
        modes = set()
        for dset in fh:
            # TODO: extend Multipole to save the radii as attributes and/or
            # use a group structure in the hdf5 file
            m = re.match(r'l(\d*)_m(-?\d*)_r(\d*\.\d)', dset)
            if m:
                radius = float(m.group(3))
                mode = (int(m.group(1)), int(m.group(2)))
                modes.add(mode)
                radii.add(radius)
    modes = sorted(modes)
    radii = sorted(radii)
    return radii, modes


# -----------------------------------------------------------------------------
# POWER Method
# -----------------------------------------------------------------------------
def POWER(sim_path, radii, modes):
    main_dir = sim_path
    sim = os.path.split(sim_path)[-1]
    simdirs = main_dir+"/output-????/%s/" % (sim)
    f0 = getCutoffFrequencyFromTwoPuncturesBBH(main_dir+"/output-0000/%s/TwoPunctures.bbh" % (sim))
    #Get simulation total mass
    ADMMass = getADMMassFromTwoPunctureBBH(main_dir+"/output-0000/%s/TwoPunctures.bbh" % (sim))
    # get translation table from (mode, radius) to dataset name
    # TODO: this ought to be handled differently
    dsets = {}
    fn = sorted(glob.glob(sim_path+"/output-????/*/mp_[Pp]si4.h5"))[0]
    with h5py.File(fn, "r") as fh:
        for dset in fh:
            # TODO: extend Multipole to save the radii as attributes and/or
            # use a group structure in the hdf5 file
            m = re.match(r'l(\d*)_m(-?\d*)_r(\d*\.\d)', dset)
            if m:
                radius = float(m.group(3))
                mode = (int(m.group(1)), int(m.group(2)))
                dsets[(radius, mode)] = dset

    #Get Psi4
    for (l,m) in modes:                      # 25 times through the loop, from (1,1) to (4,4)
            mp_psi4_vars = []
            strain = []
            phase = []
            amp = []
            for i in range(len(radii)):      # so 7 times through each mode at each of the 7 radii
                    #------------------------------------------------
                    # Read in HDF5 data
                    #------------------------------------------------
                    radius = radii[i]
                    psi4dsetname = dsets[(radius, (l,m))]
                    mp_psi4 = loadHDF5Series(simdirs+"mp_psi4.h5", psi4dsetname)
                    mp_psi4_vars.append(mp_psi4)

                    #-----------------------------------------
                    # Prepare for conversion to strain
                    #-----------------------------------------
                    # retardate time by estimated travel time to each detector,
                    # convert from psi4 to r*psi4 to account for initial 1/r falloff
                    # RH: it might be even better (though harder to define) to
                    # get a retardating time by looking at the time of the
                    # maximum (found as an optimization over an interpolating
                    # function, not argmax)
                    mp_psi4_vars[i][:, 0] -= RadialToTortoise(radius, ADMMass)
                    mp_psi4_vars[i][:, 1] *= radii[i]
                    mp_psi4_vars[i][:, 2] *= radii[i]
                    #Check for psi4 amplitude going to zero
                    # RH: this makes very little sense since the amplitude is
                    # expected to be zero initially and very late
                    psi4_amp = np.sqrt(mp_psi4_vars[i][:, 1]**2 + mp_psi4_vars[i][:, 2]**2)
                    min_psi4_amp = np.amin(psi4_amp)
                    if(min_psi4_amp < np.finfo(float).eps and l >= 2):
                        print("The psi4 amplitude is near zero. The phase is ill-defined.")
                    #Fixed-frequency integration twice to get strain
                    #-----------------------------------------------------------------
                    # Strain Conversion
                    #-----------------------------------------------------------------

                    hTable = psi4ToStrain(mp_psi4_vars[i], f0)  # table of strain

                    time = hTable[:, 0]
                    h = hTable[:, 1]
                    hplus = h.real
                    hcross = h.imag
                    newhTable = np.column_stack((time, hplus, hcross))
                    warnings.filterwarnings('ignore')
                    finalhTable = newhTable.astype(float)
                    strain.append(finalhTable)
                    #-------------------------------------------------------------------
                    # Analysis of Strain
                    #-------------------------------------------------------------------
                    #Get phase and amplitude of strain
                    h_phase = np.unwrap(np.angle(h))
                    # print(len(h_phase), "h_phase length")
                    # print(len(time), "time length")
                    angleTable = np.column_stack((time, h_phase))     ### start here
                    angleTable = angleTable.astype(float)             ### b/c t is defined based on
                    phase.append(angleTable)                          ### time here
                    h_amp = np.absolute(h)
                    ampTable = np.column_stack((time, h_amp))
                    ampTable = ampTable.astype(float)
                    amp.append(ampTable)


            #print("h_amp:" , h_amp)

            #----------------------------------------------------------------------
            # Extrapolation
            #----------------------------------------------------------------------

            # get common range in times
            tmin = max([phase[i][ 0,0] for i in range(len(phase))])
            tmax = min([phase[i][-1,0] for i in range(len(phase))])
            # smallest timestep in any series
            dtmin = min([np.amin(np.diff(phase[0][:,0])) for i in range(len(phase))])

            # uniform, common time
            t = np.arange(tmin, tmax, dtmin)

            # Interpolate phase and amplitude
            for i in range(len(radii)):
                    interp_function = scipy.interpolate.interp1d(amp[i][:, 0], amp[i][:, 1], kind=interpolation_order)
                    resampled_amp_vals = interp_function(t)
                    amp[i] = np.column_stack((t, resampled_amp_vals))

                    interp_function = scipy.interpolate.interp1d(phase[i][:, 0], phase[i][:, 1], kind=interpolation_order)
                    resampled_phase_vals = interp_function(t)
                    # try and keep all phases at the amplitude maximum within 2pi of each other
                    # alignment is between neighbhours just in case there actually ever is
                    # >2pi difference between the innermost and the ohtermost detector
                        # for some modes (post 2,2) the initial junk can be the
                        # largest amplitude contribution, so w try to skip it
                        # when looking for maxima
                        junk_time = 50.
                        post_junk_idx_p = amp[i-1][:,0] > junk_time
                        post_junk_idx = amp[i-1][:,0] > junk_time
                        maxargp = np.argmax(amp[i-1][post_junk_idx_p,1])
                        maxarg = np.argmax(amp[i][post_junk_idx,1])
                        phase_shift = round((resampled_phase_vals[post_junk_idx][maxarg] - phase[i-1][post_junk_idx_p][maxargp,1])/(2.*math.pi))*2.*math.pi
                        resampled_phase_vals -= phase_shift
                    phase[i] = np.column_stack((t, resampled_phase_vals))

            #Extrapolate
            phase_extrapolation_order = 1
            amp_extrapolation_order = 2
            radii = np.asarray(radii, dtype=float)
            A_phase = np.ones_like(radii)
            A_amp = np.ones_like(radii)

            for i in range(1, phase_extrapolation_order+1):
                A_phase = np.column_stack((A_phase, np.power(radii, -1*i)))
            for i in range(1, amp_extrapolation_order+1):
                A_amp = np.column_stack((A_amp, np.power(radii, -1*i)))
            b_phase = np.empty_like(radii, shape=(len(radii), len(t)))
            b_amp = np.empty_like(radii, shape=(len(radii), len(t)))
            for j in range(len(radii)):
                b_phase[j] = phase[j][:, 1]
                b_amp[j] = amp[j][:, 1]

            x_phase = np.linalg.lstsq(A_phase, b_phase)[0]
            radially_extrapolated_phase = x_phase[0]
            x_amp = np.linalg.lstsq(A_amp, b_amp)[0]
            radially_extrapolated_amp = x_amp[0]

            radially_extrapolated_h_plus = radially_extrapolated_amp * np.cos(radially_extrapolated_phase)
            radially_extrapolated_h_cross = radially_extrapolated_amp * np.sin(radially_extrapolated_phase)
            extrapolated_strains.append(np.column_stack((t, radially_extrapolated_h_plus, radially_extrapolated_h_cross)))
    return extrapolated_strains
# -----------------------------------------------------------------------------
# Nakano Method
# -----------------------------------------------------------------------------

def eq_29(sim_path, radii_list, modes):
    def psi4ToStrain2(mp_psi4, f0):
        """
        Convert the input mp_psi4 data to the strain of the gravitational wave
        
        mp_psi4 = Weyl scalar result from simulation
        f0 = cutoff frequency
        return = strain (h) of the gravitational wave
        """
        #TODO: Check for uniform spacing in time
        t0 = mp_psi4[:, 0]
        list_len = len(t0)
        complexPsi = mp_psi4[:, 1]
    
        freq, psif = myFourierTransform(t0, complexPsi)
        hf = ffi(freq, psif, f0)
    
        time, h = myFourierTransformInverse(freq, hf, t0[0])
        hTable = np.column_stack((time, h))
        return hTable
    main_dir = sim_path
    sim = os.path.split(sim_path)[-1]
    simdirs = sim_path+"/output-????/%s/" % (sim)
    # get translation table from (mode, radius) to dataset name
    # TODO: this ought to be handled differently
    dsets = {}
    fn = sorted(glob.glob(sim_path+"/output-????/*/mp_[Pp]si4.h5"))[0]
    with h5py.File(fn, "r") as fh:
        for dset in fh:
            # TODO: extend Multipole to save the radii as attributes and/or
            # use a group structure in the hdf5 file
            m = re.match(r'l(\d*)_m(-?\d*)_r(\d*\.\d)', dset)
            if m:
                radius = float(m.group(3))
                mode = (int(m.group(1)), int(m.group(2)))
                dsets[(radius, mode)] = dset
    a, M = getFinalSpinFromQLM(sim_path)
    f0 = getCutoffFrequencyFromTwoPuncturesBBH(main_dir+"/output-0000/%s/TwoPunctures.bbh" % (sim))

    extrapolated_strains = []
    for (l,m) in modes:
        for radius in radii_list:
                ar = loadHDF5Series(simdirs+"mp_psi4.h5" , dsets[(radius, (l,m))])   # loads HDF5 Series from file mp_psi4.h5, specifically the "l%d_m%d_r100.00" ones ... let's loop this over all radii
                psi = np.column_stack((ar[:,0], ar[:,1] + 1j * ar[:,2]))
                # 1st column of ar, time data points
                # 2nd column of ar, data points for psi
                # 3rd column of ar, data points for imaginary psi
                news = psi4ToStrain2(psi, f0)
                strain = psi4ToStrain2(news, f0)
                if (radius, (l+1,m)) in dsets:
                    # TODO: throw an error when a physical mode is not present in the file?
                    modes_a = dsets[(radius, (l+1,m))]         # "top" modes
                    ar_a = loadHDF5Series(simdirs+'mp_psi4.h5' , modes_a)
                    psi_a = np.column_stack((ar_a[:,0], ar_a[:,1] + 1j * ar_a[:,2]))
                    dt_psi_a = np.column_stack((psi_a[:,0], np.gradient(psi_a[:,1], psi_a[:,0])))
                    B = 2.j*a/(l+1.)**2*np.sqrt((l+3.)*(l-1)*(l+m+1.)*(l-m+1.)/((2.*l+1.)*(2.*l+3.)))
                    b_1 = 1.
                    b_2 = l*(l+3.)/radius
                else:
                    psi_a = np.zeros_like(psi)             # ...fill psi_a and impsi_a arrays with zeros (mode is unphysical)
                    dt_psi_a = np.zeros_like(psi)          # ...fill psi_a and impsi_a arrays with zeros (mode is unphysical)
                if m > l-1:                                # if m is greater than the bottom mode...
                    psi_b = np.zeros_like(psi)             # ...fill psi_b and impsi_b arrays with zeros (mode is unphysical)
                    dt_psi_b = np.zeros_like(psi)          # ...fill psi_b and impsi_b arrays with zeros (mode is unphysical)
                    modes_b = dsets[(radius, (l-1, m))]    # "bottom" modes
                    ar_b = loadHDF5Series(simdirs+'mp_psi4.h5' , modes_b)
                    psi_b = np.column_stack((ar_b[:,0], ar_b[:,1] + 1j * ar_b[:,2]))
                    dt_psi_b = np.column_stack((psi_b[:,0], np.gradient(psi_b[:,1], psi_b[:,0])))
                    C = 2.j*a/l**2*np.sqrt((l+2.)*(l-2.)*(l+m)*(l-m)/((2.*l-1.)*(2.*l+1.)))
                    c_1 = 1.
                    c_2 = (l-2.)*(l+1.)/radius

                A = 1.-(2.*M/radius)
                a_1 = radius
                a_2 = (l-1.)*(l+2.)/(2.*radius)
                a_3 = (l-1.)*(l+2.)*(l**2 + l - 4.)/(8*radius*radius)
                extrapolated_psi_data = A*(a_1*psi[:,1] - a_2*radius*news[:,1] + a_3*radius*strain[:,1]) + B*(b_1*radius*dt_psi_a[:,1] - b_2*radius*psi_a[:,1]) - C*(c_1*radius*dt_psi_b[:,1] - c_2*radius*psi_b[:,1])
                extrapolated_psi = np.column_stack((psi[:,0], extrapolated_psi_data.real, extrapolated_psi_data.imag))
                extrapolated_strain = psi4ToStrain(extrapolated_psi, f0)
                extrapolated_strains.append(np.column_stack(
                  (extrapolated_strain[:,0].real, extrapolated_strain[:,1].real,
                   extrapolated_strain[:,1].imag)))


# -----------------------------------------------------------------------------

def dir_path(string):
    if os.path.isdir(string):
        return string
    else:
        print("Not a directory: %s" %(string))
        # raise NotADirectoryError(string)
parser = argparse.ArgumentParser(description='Choose extrapolation method')
parser.add_argument("method" , choices=["POWER" , "Nakano"] , help="Extrapolation method to be used here")
parser.add_argument('-r', "--radii" , type=int , help="For POWER method; Number of radii to be used", default=7)
parser.add_argument('-m' , "--modes" , type=str , help="For Nakano method; modes to use, l,m. Leave blank to extrapolate over all available modes")
parser.add_argument("path" , type=dir_path , help="Simulation to be used here")
args = parser.parse_args()
if args.method == "POWER":        
    print("Extrapolating with POWER method...")
    all_radii, all_modes = getModesInFile(args.path)
    radii = all_radii[0:args.radii]
    modes = all_modes

    strains = POWER(args.path, radii, modes)

    #Create data directories
    sim = os.path.split(args.path)[-1]
    main_directory = "Extrapolated_Strain"
    sim_dir = main_directory + "/" + sim
    if not os.path.exists(main_directory):
            os.makedirs(main_directory)
    if not os.path.exists(sim_dir):
            os.makedirs(sim_dir)

    for i, (l,m) in enumerate(modes):
        np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l"+str(l)+"_m"+str(m)+".dat", strains[i])
elif args.method == "Nakano":
    print("Extrapolating with Nakano method...")
    all_radii, all_modes = getModesInFile(args.path)
    radii = all_radii[0:args.radii]
    modes = [(0, 0), (1, 0), (1, 1), (2, -1), (2, 0), (2, 1), (2, 2), (3, -2), (3, -1), (3, 0), (3, 1), (3, 2), (3, 3)]
    strains = eq_29(args.path, radii, modes)
    #Create data directories
    sim = os.path.split(args.path)[-1]
    main_directory = "Extrapolated_Strain(Nakano_Kerr)"
    sim_dir = main_directory + "/" + sim
    if not os.path.exists(main_directory):
            os.makedirs(main_directory)
    if not os.path.exists(sim_dir):
            os.makedirs(sim_dir)

    strain = iter(strains)
    for (l,m) in modes:
        for r in radii:
            fn = "%s_f2_l%d_m%d_r%.2f_Looped.dat" % (sim, l, m, r)
            np.savetxt("./Extrapolated_Strain(Nakano_Kerr)/"+sim+"/"+fn, next(strain))