Newer
Older
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Copyright (c) 2017 The Board of Trustees of the University of Illinois
# All rights reserved.
#
# Developed by: Daniel Johnson, E. A. Huerta, Roland Haas
# NCSA Gravity Group
# National Center for Supercomputing Applications
# University of Illinois at Urbana-Champaign
# http://gravity.ncsa.illinois.edu/
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to
# deal with the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
# sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimers.
#
# Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimers in the documentation
# and/or other materials provided with the distribution.
#
# Neither the names of the National Center for Supercomputing Applications,
# University of Illinois at Urbana-Champaign, nor the names of its
# contributors may be used to endorse or promote products derived from this
# Software without specific prior written permission.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# WITH THE SOFTWARE.
# Based off of SimulationTools Mathematica Package
# http://www.simulationtools.org/
import numpy as np
import glob
import os
import h5py
import math
import sys
import warnings
import scipy.optimize
import scipy.interpolate
#-----Function Definitions-----#
def joinDsets(dsets):
"""joints multiple datasets which each have a
time like first column, eg iteration number of
time. Removes overlapping segments, keeping the
last segment.
dsets = iterable of 2d array like objects with data"""
# joins multiple datasets of which the first column is assumed to be "time"
if(not dsets):
return None
length = 0
for d in dsets:
length += len(d)
newshape = list(dsets[0].shape)
newshape[0] = length
dset = np.empty(shape=newshape, dtype=dsets[0].dtype)
usedlength = 0
for d in dsets:
insertpointidx = np.where(dset[0:usedlength,0] >= d[0,0])
if(insertpointidx[0].size):
insertpoint = insertpointidx[0][0]
else:
insertpoint = usedlength
newlength = insertpoint+len(d)
dset[insertpoint:newlength] = d
usedlength = newlength
return dset[0:usedlength]
"""load HDF5 timeseries data and concatenate the content of multiple files
nameglob = a shell glob that matches all files to be loaded,
files are sorted alphabetically
series = HDF5 dataset name of dataset to load from files"""
dsets = list()
for fn in sorted(glob.glob(nameglob)):
fh = h5py.File(fn, "r")
dsets.append(fh[series])
return joinDsets(dsets)
# -----------------------------------------------------------------------------
# POWER Method
# -----------------------------------------------------------------------------
#Function used in getting psi4 from simulation
print("argv:",argv)
print("args:",args)
#Convert radial to tortoise coordinates
def RadialToTortoise(r, M):
"""
Convert the radial coordinate to the tortoise coordinate
r = radial coordinate
M = ADMMass used to convert coordinate
return = tortoise coordinate value
"""
return r + 2. * M * math.log( r / (2. * M) - 1.)
#Convert modified psi4 to strain
def psi4ToStrain(mp_psi4, f0):
"""
Convert the input mp_psi4 data to the strain of the gravitational wave
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
mp_psi4 = Weyl scalar result from simulation
f0 = cutoff frequency
return = strain (h) of the gravitational wave
"""
#TODO: Check for uniform spacing in time
t0 = mp_psi4[:, 0]
list_len = len(t0)
complexPsi = np.zeros(list_len, dtype=np.complex_)
complexPsi = mp_psi4[:, 1]+1.j*mp_psi4[:, 2]
freq, psif = myFourierTransform(t0, complexPsi)
dhf = ffi(freq, psif, f0)
hf = ffi(freq, dhf, f0)
time, h = myFourierTransformInverse(freq, hf, t0[0])
hTable = np.column_stack((time, h))
return hTable
#Fixed frequency integration
# See https://arxiv.org/abs/1508.07250 for method
def ffi(freq, data, f0):
"""
Integrates the data according to the input frequency and cutoff frequency
freq = fourier transform frequency
data = input on which ffi is performed
f0 = cutoff frequency
"""
f1 = f0/(2*math.pi)
fs = freq
gs = data
mask1 = (np.sign((fs/f1) - 1) + 1)/2.
mask2 = (np.sign((-fs/f1) - 1) + 1)/2.
mask = 1 - (1 - mask1) * (1 - mask2)
fs2 = mask * fs + (1-mask) * f1 * np.sign(fs - np.finfo(float).eps)
new_gs = gs/(2*math.pi*1.j*fs2)
return new_gs
#Fourier Transform
def myFourierTransform(t0, complexPsi):
"""
Transforms the complexPsi data to frequency space
t0 = time data points
complexPsi = data points of Psi to be transformed
"""
psif = np.fft.fft(complexPsi, norm="ortho")
l = len(complexPsi)
n = int(math.floor(l/2.))
newpsif = psif[l-n:]
newpsif = np.append(newpsif, psif[:l-n])
T = np.amin(np.diff(t0))*l
freq = range(-n, l-n)/T
return freq, newpsif
#Inverse Fourier Transform
def myFourierTransformInverse(freq, hf, t0):
l = len(hf)
n = int(math.floor(l/2.))
newhf = hf[n:]
newhf = np.append(newhf, hf[:n])
amp = np.fft.ifft(newhf, norm="ortho")
df = np.amin(np.diff(freq))
time = t0 + range(0, l)/(df*l)
return time, amp
def angular_momentum(x, q, m, chi1, chi2, LInitNR):
eta = q/(1.+q)**2
m1 = (1.+math.sqrt(1.-4.*eta))/2.
m2 = m - m1
S1 = m1**2. * chi1
S2 = m2**2. * chi2
Sl = S1+S2
Sigmal = S2/m2 - S1/m1
DeltaM = m1 - m2
mu = eta
nu = eta
GammaE = 0.5772156649;
e4 = -(123671./5760.)+(9037.* math.pi**2.)/1536.+(896.*GammaE)/15.+(-(498449./3456.)+(3157.*math.pi**2.)/576.)*nu+(301. * nu**2.)/1728.+(77.*nu**3.)/31104.+(1792. *math.log(2.))/15.
e5 = -55.13
j4 = -(5./7.)*e4+64./35.
j5 = -(2./3.)*e5-4988./945.-656./135. * eta;
a1 = -2.18522;
a2 = 1.05185;
a3 = -2.43395;
a4 = 0.400665;
a5 = -5.9991;
CapitalDelta = (1.-4.*eta)**0.5
l = (eta/x**(1./2.)*(
1. +
x*(3./2. + 1./6.*eta) +
x**2. *(27./8. - 19./8.*eta + 1./24.*eta**2.) +
x**3. *(135./16. + (-6889./144. + 41./24. * math.pi**2.)*eta + 31./24.*eta**2. + 7./1296.*eta**3.) +
x**4. *((2835./128.) + eta*j4 - (64.*eta*math.log(x)/3.))+
x**5. *((15309./256.) + eta*j5 + ((9976./105.) + (1312.*eta/15.))*eta*math.log(x))+
x**(3./2.)*(-(35./6.)*Sl - 5./2.*DeltaM* Sigmal) +
x**(5./2.)*((-(77./8.) + 427./72.*eta)*Sl + DeltaM* (-(21./8.) + 35./12.*eta)*Sigmal) +
x**(7./2.)*((-(405./16.) + 1101./16.*eta - 29./16.*eta**2.)*Sl + DeltaM*(-(81./16.) + 117./4.*eta - 15./16.*eta**2.)*Sigmal) +
(1./2. + (m1 - m2)/2. - eta)* chi1**2. * x**2. +
(1./2. + (m2 - m1)/2. - eta)* chi2**2. * x**2. +
2.*eta*chi1*chi2*x**2. +
((13.*chi1**2.)/9. +
(13.*CapitalDelta*chi1**2.)/9. -
(55.*nu*chi1**2.)/9. -
29./9.*CapitalDelta*nu*chi1**2. +
(14.*nu**2. *chi1**2.)/9. +
(7.*nu*chi1*chi2)/3. +
17./18.* nu**2. * chi1 * chi2 +
(13.* chi2**2.)/9. -
(13.*CapitalDelta*chi2**2.)/9. -
(55.*nu*chi2**2.)/9. +
29./9.*CapitalDelta*nu*chi2**2. +
(14.*nu**2. * chi2**2.)/9.)
* x**3.))
return l - LInitNR
#Get cutoff frequency
def getCutoffFrequency(sim_name):
"""
Determine cutoff frequency of simulation
sim_name = string of simulation
return = cutoff frequency
"""
filename = main_dir+"/output-0000/%s.par" % (sim_name)
with open(filename) as file:
contents = file.readlines()
for line in contents:
line_elems = line.split(" ")
if(line_elems[0] == "TwoPunctures::par_b"):
par_b = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::center_offset[0]"):
center_offset = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::par_P_plus[1]"):
pyp = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::par_P_minus[1]"):
pym = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::target_M_plus"):
m1 = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::target_M_minus"):
m2 = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::par_S_plus[2]"):
S1 = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::par_S_minus[2]"):
S2 = float(line_elems[-1])
xp = par_b + center_offset
xm = -1*par_b + center_offset
LInitNR = xp*pyp + xm*pym
M = m1+m2
q = m1/m2
chi1 = S1/m1**2
chi2 = S2/m2**2
# .014 is the initial guess for cutoff frequency
omOrbPN = scipy.optimize.fsolve(angular_momentum, .014, (q, M, chi1, chi2, LInitNR))[0]
omOrbPN = omOrbPN**(3./2.)
omGWPN = 2. * omOrbPN
omCutoff = 0.75 * omGWPN
return omCutoff
#Get Energy
def get_energy(sim):
"""
Save the energy radiated energy
sim = string of simulation
"""
python_strain = np.loadtxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l2_m2.dat")
val = np.zeros(len(python_strain))
val = val.astype(np.complex_)
cur_max_time = python_strain[0][0]
cur_max_amp = abs(pow(python_strain[0][1], 2))
# TODO: rewrite as array operations (use np.argmax)
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
for i in python_strain[:]:
cur_time = i[0]
cur_amp = abs(pow(i[1], 2))
if(cur_amp>cur_max_amp):
cur_max_amp = cur_amp
cur_max_time = cur_time
max_idx = 0
for i in range(0, len(python_strain[:])):
if(python_strain[i][1] > python_strain[max_idx][1]):
max_idx = i
paths = glob.glob("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l[2-4]_m*.dat")
for path in paths:
python_strain = np.loadtxt(path)
t = python_strain[:, 0]
t = t.astype(np.complex_)
h = python_strain[:, 1] + 1j * python_strain[:, 2]
dh = np.zeros(len(t), dtype=np.complex_)
for i in range(0, len(t)-1):
dh[i] = ((h[i+1] - h[i])/(t[i+1] - t[i]))
dh[len(t)-1] = dh[len(t)-2]
dh_conj = np.conj(dh)
prod = np.multiply(dh, dh_conj)
local_val = np.zeros(len(t))
local_val = local_val.astype(np.complex_)
# TODO: rewrite as array notation using np.cumtrapz
local_val[i] = np.trapz(prod[:i], x=(t[:i]))
val += local_val
val *= 1/(16 * math.pi)
np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_energy.dat", val)
#Get angular momentum
def get_angular_momentum(python_strain):
"""
Save the energy radiated angular momentum
sim = string of simulation
"""
python_strain = np.loadtxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l2_m2.dat")
val = np.zeros(len(python_strain))
val = val.astype(np.complex_)
cur_max_time = python_strain[0][0]
cur_max_amp = abs(pow(python_strain[0][1], 2))
# TODO: rewrite as array operations (use np.argmax)
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
for i in python_strain[:]:
cur_time = i[0]
cur_amp = abs(pow(i[1], 2))
if(cur_amp>cur_max_amp):
cur_max_amp = cur_amp
cur_max_time = cur_time
max_idx = 0
for i in range(0, len(python_strain[:])):
if(python_strain[i][1] > python_strain[max_idx][1]):
max_idx = i
paths = glob.glob("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l[2-4]_m*.dat")
for path in paths:
python_strain = np.loadtxt(path)
t = python_strain[:, 0]
t = t.astype(np.complex_)
h = python_strain[:, 1] + 1j * python_strain[:, 2]
dh = np.zeros(len(t), dtype=np.complex_)
# TODO: rewrite using array notation
for i in range(0, len(t)-1):
dh[i] = ((h[i+1] - h[i])/(t[i+1] - t[i]))
dh[len(t)-1] = dh[len(t)-2]
dh_conj = np.conj(dh)
prod = np.multiply(h, dh_conj)
local_val = np.zeros(len(t))
local_val = local_val.astype(np.complex_)
# TODO: rewrite as array notation using np.cumtrapz. Move atoi call out of inner loop.
local_val[i] = scipy.integrate.cumtrapz(prod[:i], x=(t[:i])) * int(((path.split("_")[-1]).split("m")[-1]).split(".")[0])
val += local_val
val *= 1/(16 * math.pi)
np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_angular_momentum.dat", val)
#-----Main-----#
if __name__ == "__main__":
if(len(argv) < 2):
print("Pass in the number n of the n innermost detector radii to be used in the extrapolation (optional, default=all) and the simulation folders (e.g., ./power.py 6 ./simulations/J0040_N40 /path/to/my_simulation_folder).")
sys.exit()
elif(os.path.isdir(argv[2])):
radiiUsedForExtrapolation = 7 #use the first n radii available i.e. no radii specified, defaults to 7
paths = argv[2:]
# elif(len(argv) == 4): # if user specifies number of radii
# radiiUsedForExtrapolation = int(argv[2])
# paths = argv[4:]
elif(not os.path.isdir(argv[2])):
radiiUsedForExtrapolation = int(argv[2]) #use the first n radii available
if(radiiUsedForExtrapolation < 1 or radiiUsedForExtrapolation > 7):
print("Invalid specified radii number")
sys.exit()
paths = argv[4:]
print("Radii to be used:", radiiUsedForExtrapolation)
print("argv[2]:", argv[2])
print("argv[2:]:", argv[2:])
for sim_path in paths:
main_dir = sim_path
sim = os.path.split(sim_path)[-1]
simdirs = main_dir+"/output-????/%s/" % (sim)
f0 = getCutoffFrequency(sim)
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
#Get simulation total mass
ADMMass = None
two_punctures_files = sorted(glob.glob(main_dir+"/output-????/%s/TwoPunctures.bbh" % (sim)))
out_files = sorted(glob.glob(main_dir+"/output-????/%s.out" % (sim)))
par_files = sorted(glob.glob(main_dir+"/output-????/%s.par" % (sim)))
if(two_punctures_files):
two_punctures_file = two_punctures_files[0]
with open(two_punctures_file) as file:
contents = file.readlines()
for line in contents:
line_elems = line.split(" ")
if(line_elems[0] == "initial-ADM-energy"):
ADMMass = float(line_elems[-1])
elif(out_files):
out_file = out_files[0]
with open(out_file) as file:
contents = file.readlines()
for line in contents:
m = re.match("INFO \(TwoPunctures\): The total ADM mass is (.*)", line)
if(m):
ADMMass = float(m.group(1))
elif(par_files):
par_file = par_files[0]
print("Not yet implemented")
raise ValueError
else:
print("Cannot determine ADM mass")
raise ValueError
#Create data directories
main_directory = "Extrapolated_Strain"
sim_dir = main_directory+"/"+sim
if not os.path.exists(main_directory):
os.makedirs(main_directory)
if not os.path.exists(sim_dir):
os.makedirs(sim_dir)
# TODO: fix this. It will fail if output-0000 does not contain any mp
# output and also will open the output files multiple times
fn = sorted(glob.glob(simdirs+"mp_psi4.h5"))[0]
with h5py.File(fn, "r") as fh:
# get all radii
radii = set()
modes = set()
dsets = dict()
for dset in fh:
# TODO: extend Multipole to save the radii as attributes and/or
# use a group structure in the hdf5 file
m = re.match(r'l(\d*)_m(-?\d*)_r(\d*\.\d)', dset)
if m:
radius = float(m.group(3))
mode = (int(m.group(1)), int(m.group(2)))
modes.add(mode)
radii.add(radius)
dsets[(radius, mode)] = dset
modes = sorted(modes)
radii = sorted(radii)
print("radii:",radii)
print("modes:",modes)
for (l,m) in modes: # 25 times through the loop, from (1,1) to (4,4)
#Get Tortoise Coordinate
mp_psi4_vars = []
tortoise = []
strain = []
phase = []
amp = []
for i in range(len(radii)): # so 7 times through each mode at each of the 7 radii
#------------------------------------------------
# Read in HDF5 data
#------------------------------------------------
radius = radii[i]
psi4dsetname = dsets[(radius, (l,m))]
mp_psi4 = loadHDF5Series(simdirs+"mp_psi4.h5", psi4dsetname)
mp_psi4_vars.append(mp_psi4)
#------------------------------------------------
# Coordinate conversion to Tortoise
#------------------------------------------------
tortoise.append(-RadialToTortoise(radius, ADMMass))
#-----------------------------------------
# Prepare for conversion to strain
#-----------------------------------------
#Get modified Psi4 (Multiply real and imaginary psi4 columns by radii and add the tortoise coordinate to the time column)
mp_psi4_vars[i][:, 0] += tortoise[i]
mp_psi4_vars[i][:, 1] *= radii[i]
mp_psi4_vars[i][:, 2] *= radii[i]
#Check for psi4 amplitude going to zero
cur_psi4_amp = np.sqrt(mp_psi4_vars[i][0, 1]**2 + mp_psi4_vars[i][0, 2]**2)
min_psi4_amp = cur_psi4_amp
# TODO: use array notation for this since it finds the minimum amplitude
for j in range(0, len(mp_psi4_vars[i][:, 0])):
cur_psi4_amp = np.sqrt(mp_psi4_vars[i][j, 1]**2 + mp_psi4_vars[i][j, 2]**2)
if(cur_psi4_amp < min_psi4_amp):
min_psi4_amp = cur_psi4_amp
if(min_psi4_amp < np.finfo(float).eps and l >= 2):
print("The psi4 amplitude is near zero. The phase is ill-defined.")
#Fixed-frequency integration twice to get strain
#-----------------------------------------------------------------
# Strain Conversion
#-----------------------------------------------------------------
print("f0:",f0)
hTable = psi4ToStrain(mp_psi4_vars[i], f0) # table of strain
print("hTable:",hTable)
sys.exit()
time = hTable[:, 0]
h = hTable[:, 1]
hplus = h.real
hcross = h.imag
newhTable = np.column_stack((time, hplus, hcross))
warnings.filterwarnings('ignore')
finalhTable = newhTable.astype(float)
np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_strain_at_"+str(radii[i])+"_l"+str(l)+"_m"+str(m)+".dat", finalhTable)
strain.append(finalhTable)
#-------------------------------------------------------------------
# Analysis of Strain
#-------------------------------------------------------------------
#Get phase and amplitude of strain
h_phase = np.unwrap(np.angle(h))
# print(len(h_phase), "h_phase length")
# print(len(time), "time length")
angleTable = np.column_stack((time, h_phase)) ### start here
angleTable = angleTable.astype(float) ### b/c t is defined based on
phase.append(angleTable) ### time here
h_amp = np.absolute(h)
ampTable = np.column_stack((time, h_amp))
ampTable = ampTable.astype(float)
amp.append(ampTable)
#----------------------------------------------------------------------
# Extrapolation
#----------------------------------------------------------------------
#Interpolate phase and amplitude
t = phase[0][:, 0]
# print(len(t), "length of t")
last_t = phase[radiiUsedForExtrapolation - 1][-1, 0]
last_index = 0;
# TODO: use array notation for this (this is a boolean
# plus a first_of or so)
for i in range(0, len(phase[0][:, 0])):
if(t[i] > last_t):
last_index = i
break
last_index = last_index-1
t = phase[0][0:last_index, 0] ### array gets shrunk here ... must do it for a reason
# print(len(t), "length of t")
# print("t" , t)
dts = t[1:] - t[:-1]
dt = float(np.amin(dts))
t = np.arange(phase[0][0, 0], phase[0][last_index, 0], dt)
interpolation_order = 9
for i in range(0, radiiUsedForExtrapolation):
interp_function = scipy.interpolate.interp1d(phase[i][:, 0], phase[i][:, 1], kind=interpolation_order)
resampled_phase_vals = interp_function(t)
# try and keep all initial phases within 2pi of each other
if(i > 0):
phase_shift = round((resampled_phase_vals[0] - phase[0][0,1])/(2.*math.pi))*2.*math.pi
resampled_phase_vals -= phase_shift
phase[i] = np.column_stack((t, resampled_phase_vals))
interp_function = scipy.interpolate.interp1d(amp[i][:, 0], amp[i][:, 1], kind=interpolation_order)
resampled_amp_vals = interp_function(t)
amp[i] = np.column_stack((t, resampled_amp_vals))
#Extrapolate
phase_extrapolation_order = 1
amp_extrapolation_order = 2
radii = np.asarray(radii, dtype=float)
radii = radii[0:radiiUsedForExtrapolation]
# TODO: replace by np.ones (which is all it does anyway)
A_phase = np.power(radii, 0)
A_amp = np.power(radii, 0)
for i in range(1, phase_extrapolation_order+1):
A_phase = np.column_stack((A_phase, np.power(radii, -1*i*math.pi)))
for i in range(1, amp_extrapolation_order+1):
A_amp = np.column_stack((A_amp, np.power(radii, -1*i*math.pi)))
radially_extrapolated_phase = np.empty(0)
radially_extrapolated_amp = np.empty(0)
for i in range(0, len(t)):
b_phase = np.empty(0)
for j in range(0, radiiUsedForExtrapolation):
b_phase = np.append(b_phase, phase[j][i, 1])
x_phase = np.linalg.lstsq(A_phase, b_phase)[0]
radially_extrapolated_phase = np.append(radially_extrapolated_phase, x_phase[0])
b_amp = np.empty(0)
for j in range(0, radiiUsedForExtrapolation):
b_amp = np.append(b_amp, amp[j][i, 1])
x_amp = np.linalg.lstsq(A_amp, b_amp)[0]
radially_extrapolated_amp = np.append(radially_extrapolated_amp, x_amp[0])
radially_extrapolated_h_plus = np.empty(0)
radially_extrapolated_h_cross = np.empty(0)
for i in range(0, len(radially_extrapolated_amp)):
radially_extrapolated_h_plus = np.append(radially_extrapolated_h_plus, radially_extrapolated_amp[i] * math.cos(radially_extrapolated_phase[i]))
radially_extrapolated_h_cross = np.append(radially_extrapolated_h_cross, radially_extrapolated_amp[i] * math.sin(radially_extrapolated_phase[i]))
np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l"+str(l)+"_m"+str(m)+".dat", np.column_stack((t, radially_extrapolated_h_plus, radially_extrapolated_h_cross)))
np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_amplitude_l"+str(l)+"_m"+str(m)+".dat", np.column_stack((t, radially_extrapolated_amp)))
np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_phase_l"+str(l)+"_m"+str(m)+".dat", np.column_stack((t, radially_extrapolated_phase[:])))
print("len(hTable)" , len(hTable))
print("hTable" , hTable)
print("len(time):" , len(time))
print("time:",time)
print("t:" , t)
print('len(t):', len(t))
print('radially_extrapolated_amp:',len(radially_extrapolated_amp))
print("mp_psi4_vars",mp_psi4_vars)
print("mp_psi4",mp_psi4)
print("f0:",f0)
get_energy(sim)
get_angular_momentum(sim)
# print("simdirs:",simdirs)
# print("out_files:",out_files)
# print("par_files:",par_files)
# -----------------------------------------------------------------------------
# Nakano Method
# -----------------------------------------------------------------------------
print(len(argv))
### Finding the path in the command line command
if len(argv) < 5:
print("Error: Please specify mode...e.g. 'power.py -m 2,2 Nakano [simpath]' for the 2,2 mode")
sys.exit()
paths = argv[4]
print('paths:',paths)
main_dir = paths
sim = os.path.split(paths)[-1]
simdirs = main_dir+"/output-????/%s/" % (sim)
### Setting up directory for saving the file(s) at the end ###
main_directory = "Extrapolated_Strain(Nakano_Kerr)"
sim_dir = main_directory+"/"+sim
if not os.path.exists(main_directory):
os.makedirs(main_directory)
if not os.path.exists(sim_dir):
os.makedirs(sim_dir)
### ---------
radii_list = [100.00 , 115.00 , 136.00 , 167.00, 214.00 , 300.00 , 500.00]
for i in radii_list:
landm = argv[2]
landm = landm.split(',')
print("landm:",landm)
l = int(landm[0])
m = int(landm[1])
radius = float(i)
print("radius:",radius)
if m > l: ### Fail if m > l
print("Error: %s is a non-physical mode" % (landm))
sys.exit()
print('l:',l)
print('m:',m)
modes = "l%d_m%d_r%.2f" %(l,m,radius)
print("modes:", modes)
ar = loadHDF5Series(simdirs+"mp_psi4.h5" , modes) # loads HDF5 Series from file mp_psi4.h5, specifically the "l%d_m%d_r100.00" ones ... let's loop this over all radii
print("ar:",ar)
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
t = ar[:,0] # 1st column of ar, time data points
# print("t:" , t)
print("len(t):" , len(t))
psi = ar[:,1] # 2nd column of ar, data points for psi
print("len(")
impsi = ar[:, 2] # 3rd column of ar, data points for imaginary psi
# print("psi:",psi)
s_in = scipy.integrate.cumtrapz(psi,t) # Integrates psi along time, i.e. psi(t)
ims_in = scipy.integrate.cumtrapz(impsi,t) # Integrates impsi along time, i.e. impsi(t)
print("s_in_pre:",s_in)
print(len(s_in))
print(s_in[-1])
s_in = s_in - s_in[-1] ## here...what are these for?? They subtract off the final component...why?
ims_in = ims_in - ims_in[-1] ## here
print("s_in_post:",s_in)
print(len(s_in))
# sys.exit()
d_in = scipy.integrate.cumtrapz(s_in,t[1:])
d_in = d_in - d_in[-1] ## here
imd_in = scipy.integrate.cumtrapz(ims_in,t[1:])
imd_in = imd_in - imd_in[-1] ## here
mass_path = glob.glob(simdirs)
# A_val = np.loadtxt(main_dir+"/output-0018/J0040_N40/quasilocalmeasures-qlm_scalars..asc")
A_val = np.loadtxt(mass_path[-1]+"quasilocalmeasures-qlm_scalars..asc") ## For mass calculation
print("len(A_val):", len(A_val))
r = radius
# l = float(3)
# m = float(2)
M = A_val[:,58][-1]
a = (A_val[:,37]/A_val[:,58])[-1]
# ar_a = loadHDF5Series(simdirs+"mp_psi4.h5" , "l2_m2_r100.00")
print("l:",l)
print("m:",m)
modes_a = "l%d_m%d_r%.2f" %(l+1, m, radius) # "top" modes
ar_a = loadHDF5Series(simdirs+'mp_psi4.h5' , modes_a)
modes_b = "l%d_m%d_r%.2f" %(l-1, m, radius) # "bottom" modes
t_a = ar_a[:,0]
print("len(ar_a):" , len(ar_a))
psi_a = ar_a[:,1]
impsi_a = ar_a[:,2]
t_b = t_a
print (a,M)
# print("psi_a",psi_a)
# print("psi_b",psi_b)
if m > l-1: # if m is greater than the bottom mode...
psi_b = np.zeros(len(psi_a)) # ...fill psi_b and impsi_b arrays with zeros (mode is unphysical)
impsi_b = np.zeros(len(impsi_a))
print("We're in the if statement")
print("psi_b:",psi_b)
print("impsi_b",impsi_b)
else:
ar_b = loadHDF5Series(simdirs+'mp_psi4.h5' , modes_b)
psi_b = ar_b[:,1]
impsi_b = ar_b[:,2]
print("We're in the else statement")
print("ar_b:",ar_b)
print("ar_a:",ar_a)
print("len of ar:",len(ar))
print("len of psi:",len(psi))
print("psi:",psi)
A = 1-(2*M/r)
a_1 = r
a_2 = ((l-1)*(l+2))/(2*r)
a_3 = ((l-1)*(l+2)*(l**2 + l -4))/(8*r*r)
B = ((0+a*2j)/((l+1)**2))*((((l+3)*(l-1)*(l+m+1)*(l-m+1))/((2*l+1)*(2*l+3)))**(1/2))
b_1 = r
b_2 = l*(l+3)
C = ((0+a*2j)/((l)**2))*((((l+2)*(l-2)*(l+m)*(l-m))/((2*l-1)*(2*l+1)))**(1/2))
c_1 = r
c_2 = (l-2)*(l+1)
ans = A*(a_1*psi[2:] - a_2*s_in[1:] + a_3*d_in) + B*(b_1*np.gradient(psi_a, t_a)[2:] - b_2*psi_a[2:]) - C*(c_1*np.gradient(psi_b, t_b)[2:] - c_2*psi_b[2:])
imans = A*(a_1*impsi[2:] - a_2*ims_in[1:] + a_3*imd_in) + B*(b_1*np.gradient(impsi_a, t_a)[2:] - b_2*impsi_a[2:]) - C*(c_1*np.gradient(impsi_b, t_b)[2:] - c_2*impsi_b[2:])
f1 = scipy.integrate.cumtrapz(ans,t[2:])
f1 = f1-f1[-1]
imf1 = scipy.integrate.cumtrapz(imans,t[2:])
imf1 = imf1-imf1[-1]
f2 = scipy.integrate.cumtrapz(f1,t[3:])
# f2 = f2-f2[-1] ### dont do these
imf2 = scipy.integrate.cumtrapz(imf1,t[3:])
# imf2 = imf2-imf2[-1] ###
f3_cmp = f2 + imf2*1j
imf3 = f3_cmp.imag
f3 = f3_cmp.real
complex_psi = f3 + 1j*imf3
### Amplitude calculation?
# Ae = (f3**2 + imf3**2)**(1/2.0)
# Ae_m = scipy.interpolate.spline(np.copy(t[4:]),np.copy(Ae),np.copy(t))
# print("Ae_m:" , len(Ae_m))
np.savetxt("./Extrapolated_Strain(Nakano_Kerr)/"+sim+"/"+sim+"_f2_l%d_m%d_r%.2f.dat" %(l, m, radius) , np.column_stack((t[4:] , complex_psi.real , complex_psi.imag)))
#### f1 and f2 is/are our gravitational wave/Strain?
# -----------------------------------------------------------------------------
def dir_path(string):
if os.path.isdir(string):
return string
else:
print("Not a directory: %s" %(string))
# raise NotADirectoryError(string)
parser = argparse.ArgumentParser(description='Choose Extrapolation method')
parser.add_argument("method" , choices=["POWER" , "Nakano"] , help="Extrapolation method to be used here")
parser.add_argument('-r', "--radii" , type=int , help="For POWER method; Number of radii to be used", default=7)
parser.add_argument('-m' , "--modes" , type=str , help="For Nakano method; modes to use, l,m")
parser.add_argument("path" , type=dir_path , help="Simulation to be used here")
if args.method == "POWER":
print("Extrapolating with POWER method...")
POWER(sys.argv, args)
# if args.method == "POWER":
# print("Extrapolating with POWER method...")
# POWER(sys.argv, args)
print("Extrapolating with Nakano method...")
eq_29(sys.argv, args)