Skip to content
Snippets Groups Projects
power.py 38.6 KiB
Newer Older
Daniel Johnson's avatar
Daniel Johnson committed
#!/usr/bin/env python
Daniel Johnson's avatar
Daniel Johnson committed

Roland Haas's avatar
Roland Haas committed
# Copyright (c) 2017 The Board of Trustees of the University of Illinois
# All rights reserved.
#
# Developed by: Daniel Johnson, E. A. Huerta, Roland Haas
#               NCSA Gravity Group
#               National Center for Supercomputing Applications
#               University of Illinois at Urbana-Champaign
#               http://gravity.ncsa.illinois.edu/
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to
# deal with the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
# sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimers.
#
# Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimers in the documentation
# and/or other materials provided with the distribution.
#
# Neither the names of the National Center for Supercomputing Applications,
# University of Illinois at Urbana-Champaign, nor the names of its
# contributors may be used to endorse or promote products derived from this
# Software without specific prior written permission.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# WITH THE SOFTWARE.

Daniel Johnson's avatar
Daniel Johnson committed
# Based off of SimulationTools Mathematica Package
# http://www.simulationtools.org/

import numpy as np
import glob
import os
import h5py
Daniel Johnson's avatar
Daniel Johnson committed
import math
import sys
import warnings
import scipy.optimize
import scipy.interpolate
import scipy.integrate
Brockton Brendal's avatar
Brockton Brendal committed
import argparse
Daniel Johnson's avatar
Daniel Johnson committed

#-----Function Definitions-----#

def joinDsets(dsets):
        """joints multiple datasets which each have a
        time like first column, eg iteration number of
        time. Removes overlapping segments, keeping the
        last segment.
    
        dsets = iterable of 2d array like objects with data"""
        # joins multiple datasets of which the first column is assumed to be "time"
        if(not dsets):
            return None
        length = 0
        for d in dsets:
            length += len(d)
        newshape = list(dsets[0].shape)
        newshape[0] = length
        dset = np.empty(shape=newshape, dtype=dsets[0].dtype)
        usedlength = 0
        for d in dsets:
            insertpointidx = np.where(dset[0:usedlength,0] >= d[0,0])
            if(insertpointidx[0].size):
                insertpoint = insertpointidx[0][0]
            else:
                insertpoint = usedlength
            newlength = insertpoint+len(d)
            dset[insertpoint:newlength] = d
            usedlength = newlength
        return dset[0:usedlength]
Daniel Johnson's avatar
Daniel Johnson committed

def loadHDF5Series(nameglob, series):
        """load HDF5 timeseries data and concatenate the content of multiple files
    
        nameglob = a shell glob that matches all files to be loaded,
        files are sorted alphabetically
        series = HDF5 dataset name of dataset to load from files"""
        dsets = list()
        for fn in sorted(glob.glob(nameglob)):
            fh = h5py.File(fn, "r")
            dsets.append(fh[series])
        return joinDsets(dsets)
# -----------------------------------------------------------------------------
# POWER Method
# -----------------------------------------------------------------------------
def POWER(argv, args):
  
    #Function used in getting psi4 from simulation
    print("argv:",argv)
    print("args:",args)
    
    #Convert radial to tortoise coordinates
    def RadialToTortoise(r, M):
        """
        Convert the radial coordinate to the tortoise coordinate
    
        r = radial coordinate
        M = ADMMass used to convert coordinate
        return = tortoise coordinate value
        """
        return r + 2. * M * math.log( r / (2. * M) - 1.)
    
    #Convert modified psi4 to strain
    def psi4ToStrain(mp_psi4, f0):
        """
        Convert the input mp_psi4 data to the strain of the gravitational wave
        mp_psi4 = Weyl scalar result from simulation
        f0 = cutoff frequency
        return = strain (h) of the gravitational wave
        """
        #TODO: Check for uniform spacing in time
        t0 = mp_psi4[:, 0]
        list_len = len(t0)
        complexPsi = np.zeros(list_len, dtype=np.complex_)
        complexPsi = mp_psi4[:, 1]+1.j*mp_psi4[:, 2]
    
        freq, psif = myFourierTransform(t0, complexPsi)
        dhf = ffi(freq, psif, f0)
        hf = ffi(freq, dhf, f0)
    
        time, h = myFourierTransformInverse(freq, hf, t0[0])
        hTable = np.column_stack((time, h))
        return hTable
    
    #Fixed frequency integration
    # See https://arxiv.org/abs/1508.07250 for method
    def ffi(freq, data, f0):
        """
        Integrates the data according to the input frequency and cutoff frequency
    
        freq = fourier transform frequency
        data = input on which ffi is performed
        f0 = cutoff frequency
        """
        f1 = f0/(2*math.pi)
        fs = freq
        gs = data
        mask1 = (np.sign((fs/f1) - 1) + 1)/2.
        mask2 = (np.sign((-fs/f1) - 1) + 1)/2.
        mask = 1 - (1 - mask1) * (1 - mask2)
        fs2 = mask * fs + (1-mask) * f1 * np.sign(fs - np.finfo(float).eps)
        new_gs = gs/(2*math.pi*1.j*fs2)
        return new_gs
    
    #Fourier Transform
    def myFourierTransform(t0, complexPsi):
        """
        Transforms the complexPsi data to frequency space
    
        t0 = time data points
        complexPsi = data points of Psi to be transformed
        """
        psif = np.fft.fft(complexPsi, norm="ortho")
        l = len(complexPsi)
        n = int(math.floor(l/2.))
        newpsif = psif[l-n:]
        newpsif = np.append(newpsif, psif[:l-n])
        T = np.amin(np.diff(t0))*l
        freq = range(-n, l-n)/T
        return freq, newpsif
    
    #Inverse Fourier Transform
    def myFourierTransformInverse(freq, hf, t0):
        l = len(hf)
        n = int(math.floor(l/2.))
        newhf = hf[n:]
        newhf = np.append(newhf, hf[:n])
        amp = np.fft.ifft(newhf, norm="ortho")
        df = np.amin(np.diff(freq))
        time = t0 + range(0, l)/(df*l)
        return time, amp
    
    def angular_momentum(x, q, m, chi1, chi2, LInitNR):
        eta = q/(1.+q)**2
        m1 = (1.+math.sqrt(1.-4.*eta))/2.
        m2 = m - m1
        S1 = m1**2. * chi1
        S2 = m2**2. * chi2
        Sl = S1+S2
        Sigmal = S2/m2 - S1/m1
        DeltaM = m1 - m2
        mu = eta
        nu = eta
        GammaE = 0.5772156649;
        e4 = -(123671./5760.)+(9037.* math.pi**2.)/1536.+(896.*GammaE)/15.+(-(498449./3456.)+(3157.*math.pi**2.)/576.)*nu+(301. * nu**2.)/1728.+(77.*nu**3.)/31104.+(1792. *math.log(2.))/15.
        e5 = -55.13
        j4 = -(5./7.)*e4+64./35.
        j5 = -(2./3.)*e5-4988./945.-656./135. * eta;
        a1 = -2.18522;
        a2 = 1.05185;
        a3 = -2.43395;
        a4 = 0.400665;
        a5 = -5.9991;
        CapitalDelta = (1.-4.*eta)**0.5
    
        l = (eta/x**(1./2.)*(
            1. +
            x*(3./2. + 1./6.*eta) + 
            x**2. *(27./8. - 19./8.*eta + 1./24.*eta**2.) + 
            x**3. *(135./16. + (-6889./144. + 41./24. * math.pi**2.)*eta + 31./24.*eta**2. + 7./1296.*eta**3.) + 
            x**4. *((2835./128.) + eta*j4 - (64.*eta*math.log(x)/3.))+ 
            x**5. *((15309./256.) + eta*j5 + ((9976./105.) + (1312.*eta/15.))*eta*math.log(x))+
            x**(3./2.)*(-(35./6.)*Sl - 5./2.*DeltaM* Sigmal) + 
            x**(5./2.)*((-(77./8.) + 427./72.*eta)*Sl + DeltaM* (-(21./8.) + 35./12.*eta)*Sigmal) + 
            x**(7./2.)*((-(405./16.) + 1101./16.*eta - 29./16.*eta**2.)*Sl + DeltaM*(-(81./16.) + 117./4.*eta - 15./16.*eta**2.)*Sigmal) + 
            (1./2. + (m1 - m2)/2. - eta)* chi1**2. * x**2. +
            (1./2. + (m2 - m1)/2. - eta)* chi2**2. * x**2. + 
            2.*eta*chi1*chi2*x**2. +
            ((13.*chi1**2.)/9. +
            (13.*CapitalDelta*chi1**2.)/9. -
            (55.*nu*chi1**2.)/9. - 
            29./9.*CapitalDelta*nu*chi1**2. + 
            (14.*nu**2. *chi1**2.)/9. +
            (7.*nu*chi1*chi2)/3. +
            17./18.* nu**2. * chi1 * chi2 + 
            (13.* chi2**2.)/9. -
            (13.*CapitalDelta*chi2**2.)/9. -
            (55.*nu*chi2**2.)/9. +
            29./9.*CapitalDelta*nu*chi2**2. +
            (14.*nu**2. * chi2**2.)/9.)
            * x**3.))
        return l - LInitNR
    
    #Get cutoff frequency
    def getCutoffFrequency(sim_name):
        """
        Determine cutoff frequency of simulation
    
        sim_name = string of simulation
        return = cutoff frequency
        """
        filename = main_dir+"/output-0000/%s.par" % (sim_name)
        with open(filename) as file:
            contents = file.readlines()
            for line in contents:
                line_elems = line.split(" ")
                if(line_elems[0] == "TwoPunctures::par_b"):
                    par_b = float(line_elems[-1])
                if(line_elems[0] == "TwoPunctures::center_offset[0]"):
                    center_offset = float(line_elems[-1])
                if(line_elems[0] == "TwoPunctures::par_P_plus[1]"):
                    pyp = float(line_elems[-1])
                if(line_elems[0] == "TwoPunctures::par_P_minus[1]"):
                    pym = float(line_elems[-1])
                if(line_elems[0] == "TwoPunctures::target_M_plus"):
                    m1 = float(line_elems[-1])
                if(line_elems[0] == "TwoPunctures::target_M_minus"):
                    m2 = float(line_elems[-1])
                if(line_elems[0] == "TwoPunctures::par_S_plus[2]"):
                    S1 = float(line_elems[-1])
                if(line_elems[0] == "TwoPunctures::par_S_minus[2]"):
                    S2 = float(line_elems[-1])
    
        xp = par_b + center_offset
        xm = -1*par_b + center_offset
        LInitNR = xp*pyp + xm*pym
        M = m1+m2
        q = m1/m2
        chi1 = S1/m1**2
        chi2 = S2/m2**2
        # .014 is the initial guess for cutoff frequency
        omOrbPN = scipy.optimize.fsolve(angular_momentum, .014, (q, M, chi1, chi2, LInitNR))[0]
        omOrbPN = omOrbPN**(3./2.)
        omGWPN = 2. * omOrbPN
        omCutoff = 0.75 * omGWPN
        return omCutoff
    
    #Get Energy
    def get_energy(sim):
        """
        Save the energy radiated energy
        sim = string of simulation
        """
        python_strain = np.loadtxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l2_m2.dat")
        val = np.zeros(len(python_strain))
        val = val.astype(np.complex_)
        cur_max_time = python_strain[0][0]
        cur_max_amp = abs(pow(python_strain[0][1], 2))
        # TODO: rewrite as array operations (use np.argmax)
        for i in python_strain[:]:
            cur_time = i[0]
            cur_amp = abs(pow(i[1], 2))
            if(cur_amp>cur_max_amp):
                cur_max_amp = cur_amp
                cur_max_time = cur_time
    
        max_idx = 0
        for i in range(0, len(python_strain[:])):
            if(python_strain[i][1] > python_strain[max_idx][1]):
                max_idx = i
    
        paths = glob.glob("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l[2-4]_m*.dat")
        for path in paths:
            python_strain = np.loadtxt(path)
    
            t = python_strain[:, 0]
            t = t.astype(np.complex_)
            h = python_strain[:, 1] + 1j * python_strain[:, 2]
            dh = np.zeros(len(t), dtype=np.complex_) 
            for i in range(0, len(t)-1):
                dh[i] = ((h[i+1] - h[i])/(t[i+1] - t[i]))
            dh[len(t)-1] = dh[len(t)-2]
    
            dh_conj = np.conj(dh)
            prod = np.multiply(dh, dh_conj)
            local_val = np.zeros(len(t))
            local_val = local_val.astype(np.complex_)
                    # TODO: rewrite as array notation using np.cumtrapz
            for i in range(0, len(t)):
                local_val[i] = np.trapz(prod[:i], x=(t[:i]))
            val += local_val
            
        val *= 1/(16 * math.pi)
        np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_energy.dat", val)
    
    #Get angular momentum
    def get_angular_momentum(python_strain):
        """
        Save the energy radiated angular momentum
        sim = string of simulation
        """
        python_strain = np.loadtxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l2_m2.dat")
        val = np.zeros(len(python_strain))
        val = val.astype(np.complex_)
        cur_max_time = python_strain[0][0]
        cur_max_amp = abs(pow(python_strain[0][1], 2))
        # TODO: rewrite as array operations (use np.argmax)
        for i in python_strain[:]:
            cur_time = i[0]
            cur_amp = abs(pow(i[1], 2))
            if(cur_amp>cur_max_amp):
                cur_max_amp = cur_amp
                cur_max_time = cur_time
    
        max_idx = 0
        for i in range(0, len(python_strain[:])):
            if(python_strain[i][1] > python_strain[max_idx][1]):
                max_idx = i
    
        paths = glob.glob("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l[2-4]_m*.dat")
        for path in paths:
            python_strain = np.loadtxt(path)
    
            t = python_strain[:, 0]
            t = t.astype(np.complex_)
            h = python_strain[:, 1] + 1j * python_strain[:, 2]
            dh = np.zeros(len(t), dtype=np.complex_) 
                    # TODO: rewrite using array notation
            for i in range(0, len(t)-1):
                dh[i] = ((h[i+1] - h[i])/(t[i+1] - t[i]))
            dh[len(t)-1] = dh[len(t)-2]
    
            dh_conj = np.conj(dh)
            prod = np.multiply(h, dh_conj)
            local_val = np.zeros(len(t))
            local_val = local_val.astype(np.complex_)
                    # TODO: rewrite as array notation using np.cumtrapz. Move atoi call out of inner loop.
            for i in range(0, len(t)):
                local_val[i] = scipy.integrate.cumtrapz(prod[:i], x=(t[:i])) * int(((path.split("_")[-1]).split("m")[-1]).split(".")[0])
            val += local_val
            
        val *= 1/(16 * math.pi)
        np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_angular_momentum.dat", val)
    
    #-----Main-----#
    
    if __name__ == "__main__":
        #Initialize simulation data
        if(len(argv) < 2):
                print("Pass in the number n of the n innermost detector radii to be used in the extrapolation (optional, default=all) and the simulation folders (e.g., ./power.py 6 ./simulations/J0040_N40 /path/to/my_simulation_folder).")
                sys.exit()
        elif(os.path.isdir(argv[2])):    
                radiiUsedForExtrapolation = 7    #use the first n radii available i.e. no radii specified, defaults to 7
                paths = argv[2:] 
                
        # elif(len(argv) == 4):                               # if user specifies number of radii
        #         radiiUsedForExtrapolation = int(argv[2])
        #         paths = argv[4:]
                
        elif(not os.path.isdir(argv[2])):     
                radiiUsedForExtrapolation = int(argv[2])    #use the first n radii available  
                if(radiiUsedForExtrapolation < 1 or radiiUsedForExtrapolation > 7):
                        print("Invalid specified radii number")
                        sys.exit()
                
                
        print("Radii to be used:", radiiUsedForExtrapolation)
        print("argv[2]:", argv[2])
        print("argv[2:]:", argv[2:])
        print("len(argv):",len(argv))
        
        for sim_path in paths:
                main_dir = sim_path
                sim = os.path.split(sim_path)[-1]
                simdirs = main_dir+"/output-????/%s/" % (sim)
                f0 = getCutoffFrequency(sim)
                #Get simulation total mass
                ADMMass = None
                two_punctures_files = sorted(glob.glob(main_dir+"/output-????/%s/TwoPunctures.bbh" % (sim)))
                out_files = sorted(glob.glob(main_dir+"/output-????/%s.out" % (sim)))
                par_files = sorted(glob.glob(main_dir+"/output-????/%s.par" % (sim)))
                if(two_punctures_files):
                    two_punctures_file = two_punctures_files[0]
                    with open(two_punctures_file) as file:
                          contents = file.readlines()
                          for line in contents:
                                  line_elems = line.split(" ")
                                  if(line_elems[0] == "initial-ADM-energy"):
                                          ADMMass = float(line_elems[-1])
                elif(out_files):
                      out_file = out_files[0]
                      with open(out_file) as file:
                            contents = file.readlines()
                            for line in contents:
                                  m = re.match("INFO \(TwoPunctures\): The total ADM mass is (.*)", line)
                                  if(m):
                                      ADMMass = float(m.group(1))
                elif(par_files):
                      par_file = par_files[0]
                      print("Not yet implemented")
                      raise ValueError
                else:
                    print("Cannot determine ADM mass")
                    raise ValueError
                #Create data directories
                main_directory = "Extrapolated_Strain"
                sim_dir = main_directory+"/"+sim
                if not os.path.exists(main_directory):
                        os.makedirs(main_directory)
                if not os.path.exists(sim_dir):
                        os.makedirs(sim_dir)
    
    
                # TODO: fix this. It will fail if output-0000 does not contain any mp
                # output and also will open the output files multiple times
                fn = sorted(glob.glob(simdirs+"mp_psi4.h5"))[0]
                with h5py.File(fn, "r") as fh:
                        # get all radii
                        radii = set()
                        modes = set()
                        dsets = dict()
                        for dset in fh:
                                # TODO: extend Multipole to save the radii as attributes and/or
                                # use a group structure in the hdf5 file
                                m = re.match(r'l(\d*)_m(-?\d*)_r(\d*\.\d)', dset)
                                if m:
                                        radius = float(m.group(3))
                                        mode = (int(m.group(1)), int(m.group(2)))
                                        modes.add(mode)
                                        radii.add(radius)
                                        dsets[(radius, mode)] = dset
                        modes = sorted(modes)
                        radii = sorted(radii)
                print("radii:",radii)
                print("modes:",modes)
                for (l,m) in modes:                      # 25 times through the loop, from (1,1) to (4,4) 
                        #Get Tortoise Coordinate
                        mp_psi4_vars = []
                        tortoise = []    
                        strain = []
                        phase = []
                        amp = []
                        for i in range(len(radii)):      # so 7 times through each mode at each of the 7 radii
                                #------------------------------------------------
                                # Read in HDF5 data
                                #------------------------------------------------                 
                                radius = radii[i]
                                psi4dsetname = dsets[(radius, (l,m))]
                                mp_psi4 = loadHDF5Series(simdirs+"mp_psi4.h5", psi4dsetname)
                                mp_psi4_vars.append(mp_psi4)
                                #------------------------------------------------
                                # Coordinate conversion to Tortoise
                                #------------------------------------------------
                                tortoise.append(-RadialToTortoise(radius, ADMMass))
                                #-----------------------------------------
                                # Prepare for conversion to strain
                                #-----------------------------------------
                                #Get modified Psi4 (Multiply real and imaginary psi4 columns by radii and add the tortoise coordinate to the time column)
                                mp_psi4_vars[i][:, 0] += tortoise[i]
                                mp_psi4_vars[i][:, 1] *= radii[i]
                                mp_psi4_vars[i][:, 2] *= radii[i]
    
                                #Check for psi4 amplitude going to zero
                                cur_psi4_amp = np.sqrt(mp_psi4_vars[i][0, 1]**2 + mp_psi4_vars[i][0, 2]**2)
                                min_psi4_amp = cur_psi4_amp
                                # TODO: use array notation for this since it finds the minimum amplitude
                                for j in range(0, len(mp_psi4_vars[i][:, 0])):
                                        cur_psi4_amp = np.sqrt(mp_psi4_vars[i][j, 1]**2 + mp_psi4_vars[i][j, 2]**2)
                                        if(cur_psi4_amp < min_psi4_amp):
                                                min_psi4_amp = cur_psi4_amp
                                if(min_psi4_amp < np.finfo(float).eps and l >= 2):
                                        print("The psi4 amplitude is near zero. The phase is ill-defined.")
    
                                #Fixed-frequency integration twice to get strain
                                #-----------------------------------------------------------------
                                # Strain Conversion
                                #-----------------------------------------------------------------
                                hTable = psi4ToStrain(mp_psi4_vars[i], f0)  # table of strain
                                time = hTable[:, 0]
                                h = hTable[:, 1]
                                hplus = h.real
                                hcross = h.imag
                                newhTable = np.column_stack((time, hplus, hcross))
                                warnings.filterwarnings('ignore')
                                finalhTable = newhTable.astype(float)
                                np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_strain_at_"+str(radii[i])+"_l"+str(l)+"_m"+str(m)+".dat", finalhTable)
                                strain.append(finalhTable)
                                
                                #-------------------------------------------------------------------
                                # Analysis of Strain
                                #-------------------------------------------------------------------
                                #Get phase and amplitude of strain
                                h_phase = np.unwrap(np.angle(h))
                                # print(len(h_phase), "h_phase length")
                                # print(len(time), "time length")
                                angleTable = np.column_stack((time, h_phase))     ### start here 
                                angleTable = angleTable.astype(float)             ### b/c t is defined based on
                                phase.append(angleTable)                          ### time here 
                                h_amp = np.absolute(h)
                                ampTable = np.column_stack((time, h_amp))
                                ampTable = ampTable.astype(float)
                                amp.append(ampTable)
                        #print("h_amp:" , h_amp)
                        
                        #----------------------------------------------------------------------
                        # Extrapolation
                        #----------------------------------------------------------------------
                        #Interpolate phase and amplitude
                        t = phase[0][:, 0]
                        # print(len(t), "length of t")
                        last_t = phase[radiiUsedForExtrapolation - 1][-1, 0]
                        last_index = 0;
                        # TODO: use array notation for this (this is a boolean
                        # plus a first_of or so)
                        for i in range(0, len(phase[0][:, 0])):
                                if(t[i] > last_t):
                                        last_index = i
                                        break
                        last_index = last_index-1
                        t = phase[0][0:last_index, 0]    ### array gets shrunk here ... must do it for a reason
                        # print(len(t), "length of t")    
                        # print("t" , t)
                        dts = t[1:] - t[:-1]
                        dt = float(np.amin(dts))
                        t = np.arange(phase[0][0, 0], phase[0][last_index, 0], dt)      
                        
                        
                        interpolation_order = 9
                        for i in range(0, radiiUsedForExtrapolation):
                                interp_function = scipy.interpolate.interp1d(phase[i][:, 0], phase[i][:, 1], kind=interpolation_order)
                                resampled_phase_vals = interp_function(t)
                                # try and keep all initial phases within 2pi of each other
                                if(i > 0):
                                    phase_shift = round((resampled_phase_vals[0] - phase[0][0,1])/(2.*math.pi))*2.*math.pi
                                    resampled_phase_vals -= phase_shift
                                phase[i] = np.column_stack((t, resampled_phase_vals))
                                interp_function = scipy.interpolate.interp1d(amp[i][:, 0], amp[i][:, 1], kind=interpolation_order)
                                resampled_amp_vals = interp_function(t)
                                amp[i] = np.column_stack((t, resampled_amp_vals))
                        #Extrapolate
                        phase_extrapolation_order = 1
                        amp_extrapolation_order = 2
                        radii = np.asarray(radii, dtype=float)
                        radii = radii[0:radiiUsedForExtrapolation]
                        # TODO: replace by np.ones (which is all it does anyway)
                        A_phase = np.power(radii, 0)
                        A_amp = np.power(radii, 0)
                        for i in range(1, phase_extrapolation_order+1):
                                A_phase = np.column_stack((A_phase, np.power(radii, -1*i*math.pi)))
    
                        for i in range(1, amp_extrapolation_order+1):
                                A_amp = np.column_stack((A_amp, np.power(radii, -1*i*math.pi)))
    
                        radially_extrapolated_phase = np.empty(0)
                        radially_extrapolated_amp = np.empty(0)
                        for i in range(0, len(t)):
                                b_phase = np.empty(0)
                                for j in range(0, radiiUsedForExtrapolation):
                                        b_phase = np.append(b_phase, phase[j][i, 1])
                                x_phase = np.linalg.lstsq(A_phase, b_phase)[0]
                                radially_extrapolated_phase = np.append(radially_extrapolated_phase, x_phase[0])
    
                                b_amp = np.empty(0)
                                for j in range(0, radiiUsedForExtrapolation):
                                        b_amp = np.append(b_amp, amp[j][i, 1])
                                x_amp = np.linalg.lstsq(A_amp, b_amp)[0]
                                radially_extrapolated_amp = np.append(radially_extrapolated_amp, x_amp[0])
    
                        radially_extrapolated_h_plus = np.empty(0)
                        radially_extrapolated_h_cross = np.empty(0)
                        for i in range(0, len(radially_extrapolated_amp)):
                                radially_extrapolated_h_plus = np.append(radially_extrapolated_h_plus, radially_extrapolated_amp[i] * math.cos(radially_extrapolated_phase[i]))
                                radially_extrapolated_h_cross = np.append(radially_extrapolated_h_cross, radially_extrapolated_amp[i] * math.sin(radially_extrapolated_phase[i]))
                        np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l"+str(l)+"_m"+str(m)+".dat", np.column_stack((t, radially_extrapolated_h_plus, radially_extrapolated_h_cross)))
                        np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_amplitude_l"+str(l)+"_m"+str(m)+".dat", np.column_stack((t, radially_extrapolated_amp)))
                        np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_phase_l"+str(l)+"_m"+str(m)+".dat", np.column_stack((t, radially_extrapolated_phase[:])))
                print("len(hTable)" , len(hTable))
                print("hTable" , hTable)
                print("len(time):" , len(time))
                print("time:",time)
                print("t:" , t)
                print('len(t):', len(t))
                print('radially_extrapolated_amp:',len(radially_extrapolated_amp))
                print("mp_psi4_vars",mp_psi4_vars)
                print("mp_psi4",mp_psi4)
                print("f0:",f0)
                get_energy(sim)
                get_angular_momentum(sim)
        
        # print("simdirs:",simdirs)
        # print("out_files:",out_files)
        # print("par_files:",par_files)
# -----------------------------------------------------------------------------
# Nakano Method
# -----------------------------------------------------------------------------

def eq_29(argv, args):
    print(len(argv))
### Finding the path in the command line command
    
        print("Error: Please specify mode...e.g. 'power.py -m 2,2 Nakano [simpath]' for the 2,2 mode")
        sys.exit()
    
    paths = argv[4]
    
    print('paths:',paths)
    print("main_dir:",main_dir)
    sim = os.path.split(paths)[-1]
    print("sim:",sim)
    simdirs = main_dir+"/output-????/%s/" % (sim)
    print("simdirs:",simdirs)

### Setting up directory for saving the file(s) at the end ###

    main_directory = "Extrapolated_Strain(Nakano_Kerr)"
    sim_dir = main_directory+"/"+sim
    if not os.path.exists(main_directory):
            os.makedirs(main_directory)
    if not os.path.exists(sim_dir):
            os.makedirs(sim_dir)
### ---------
            
    radii_list = [100.00 , 115.00 , 136.00 , 167.00, 214.00 , 300.00 , 500.00]
    
    for i in radii_list:
    
            landm = argv[2]
            landm = landm.split(',')
            print("landm:",landm)
            l = int(landm[0])
            m = int(landm[1])
            radius = float(i)
            print("radius:",radius)
            if m > l:                                                           ### Fail if m > l
                print("Error: %s is a non-physical mode" % (landm))
                sys.exit()
            
            print('l:',l)
            print('m:',m)
            
            modes = "l%d_m%d_r%.2f" %(l,m,radius)    
            print("modes:", modes)
            ar = loadHDF5Series(simdirs+"mp_psi4.h5" , modes)   # loads HDF5 Series from file mp_psi4.h5, specifically the "l%d_m%d_r100.00" ones ... let's loop this over all radii
            
            print("ar:",ar)
            t = ar[:,0]      # 1st column of ar, time data points
            # print("t:" , t)
            print("len(t):" , len(t))
            psi = ar[:,1]    # 2nd column of ar, data points for psi
            print("len(")
            impsi = ar[:, 2]   # 3rd column of ar, data points for imaginary psi
            # print("psi:",psi)
            
                 
            s_in = scipy.integrate.cumtrapz(psi,t)        # Integrates psi along time, i.e. psi(t) 
            ims_in = scipy.integrate.cumtrapz(impsi,t)    # Integrates impsi along time, i.e. impsi(t)
            print("s_in_pre:",s_in)
            print(len(s_in))
            print(s_in[-1])

            s_in = s_in - s_in[-1]    ## here...what are these for?? They subtract off the final component...why?
            ims_in = ims_in - ims_in[-1]   ## here
            
            print("s_in_post:",s_in)
            print(len(s_in))
            # sys.exit()
            
            d_in = scipy.integrate.cumtrapz(s_in,t[1:])
            d_in = d_in - d_in[-1]   ## here
            imd_in = scipy.integrate.cumtrapz(ims_in,t[1:])
            imd_in = imd_in - imd_in[-1]   ## here
        
            
            mass_path = glob.glob(simdirs)
            # A_val = np.loadtxt(main_dir+"/output-0018/J0040_N40/quasilocalmeasures-qlm_scalars..asc")    
            A_val = np.loadtxt(mass_path[-1]+"quasilocalmeasures-qlm_scalars..asc")     ## For mass calculation
            print("len(A_val):", len(A_val))
            r = radius
            # l = float(3)
            # m = float(2)
            M = A_val[:,58][-1]
            a = (A_val[:,37]/A_val[:,58])[-1]
            # ar_a = loadHDF5Series(simdirs+"mp_psi4.h5" , "l2_m2_r100.00")
            
            print("l:",l)
            print("m:",m)
               
            modes_a = "l%d_m%d_r%.2f" %(l+1, m, radius)         # "top" modes
            ar_a = loadHDF5Series(simdirs+'mp_psi4.h5' , modes_a)
            
            modes_b = "l%d_m%d_r%.2f" %(l-1, m, radius)         # "bottom" modes
            
            
            t_a = ar_a[:,0]
            print("len(ar_a):" , len(ar_a))
            psi_a = ar_a[:,1]
            impsi_a = ar_a[:,2]
            t_b = t_a
        
            print (a,M)
            # print("psi_a",psi_a)
            # print("psi_b",psi_b)
        
        
            if m > l-1:                                     # if m is greater than the bottom mode...
                psi_b = np.zeros(len(psi_a))                # ...fill psi_b and impsi_b arrays with zeros (mode is unphysical)
                impsi_b = np.zeros(len(impsi_a))
                print("We're in the if statement")
                print("psi_b:",psi_b)
                print("impsi_b",impsi_b)
            else:
                ar_b = loadHDF5Series(simdirs+'mp_psi4.h5' , modes_b)
                psi_b = ar_b[:,1]      
                impsi_b = ar_b[:,2]
                print("We're in the else statement")
                print("ar_b:",ar_b)
            
            print("ar_a:",ar_a)
            
            print("len of ar:",len(ar))
            print("len of psi:",len(psi))
            print("psi:",psi)
            
            
            
            
            A = 1-(2*M/r)
            a_1 = r
            a_2 = ((l-1)*(l+2))/(2*r)
            a_3 = ((l-1)*(l+2)*(l**2 + l -4))/(8*r*r)
            B = ((0+a*2j)/((l+1)**2))*((((l+3)*(l-1)*(l+m+1)*(l-m+1))/((2*l+1)*(2*l+3)))**(1/2))
            b_1 = r
            b_2 = l*(l+3)
            C = ((0+a*2j)/((l)**2))*((((l+2)*(l-2)*(l+m)*(l-m))/((2*l-1)*(2*l+1)))**(1/2))
            c_1 = r
            c_2 = (l-2)*(l+1)
            
          
            ans = A*(a_1*psi[2:] - a_2*s_in[1:] + a_3*d_in) + B*(b_1*np.gradient(psi_a, t_a)[2:] - b_2*psi_a[2:]) - C*(c_1*np.gradient(psi_b, t_b)[2:] - c_2*psi_b[2:])
            imans = A*(a_1*impsi[2:] - a_2*ims_in[1:] + a_3*imd_in) + B*(b_1*np.gradient(impsi_a, t_a)[2:] - b_2*impsi_a[2:]) - C*(c_1*np.gradient(impsi_b, t_b)[2:] - c_2*impsi_b[2:])
         
            
            f1 = scipy.integrate.cumtrapz(ans,t[2:])
            f1 = f1-f1[-1]
            imf1 = scipy.integrate.cumtrapz(imans,t[2:])
            imf1 = imf1-imf1[-1]
            
            f2 = scipy.integrate.cumtrapz(f1,t[3:])
            # f2 = f2-f2[-1]   ### dont do these 
            imf2 = scipy.integrate.cumtrapz(imf1,t[3:])
            # imf2 = imf2-imf2[-1]  ###
            
        
            f3_cmp = f2 + imf2*1j
            imf3 = f3_cmp.imag
            f3 = f3_cmp.real
        
        
        
            complex_psi = f3 + 1j*imf3
            
            
            ### Amplitude calculation?
            
            # Ae = (f3**2 + imf3**2)**(1/2.0)
            # Ae_m = scipy.interpolate.spline(np.copy(t[4:]),np.copy(Ae),np.copy(t))
            # print("Ae_m:" , len(Ae_m))
        
        
            
            np.savetxt("./Extrapolated_Strain(Nakano_Kerr)/"+sim+"/"+sim+"_f2_l%d_m%d_r%.2f.dat" %(l, m, radius) , np.column_stack((t[4:] , complex_psi.real , complex_psi.imag)))   
#### f1 and f2 is/are our gravitational wave/Strain?


# -----------------------------------------------------------------------------


def dir_path(string):
    if os.path.isdir(string):
        return string
    else:
        print("Not a directory: %s" %(string))
        # raise NotADirectoryError(string)

parser = argparse.ArgumentParser(description='Choose Extrapolation method')
parser.add_argument("method" , choices=["POWER" , "Nakano"] , help="Extrapolation method to be used here")
parser.add_argument('-r', "--radii" , type=int , help="For POWER method; Number of radii to be used", default=7)
parser.add_argument('-m' , "--modes" , type=str , help="For Nakano method; modes to use, l,m")
parser.add_argument("path" , type=dir_path , help="Simulation to be used here")
args = parser.parse_args()
if args.method == "POWER":        
    print("Extrapolating with POWER method...")
    POWER(sys.argv, args)
    
    
# if args.method == "POWER":
#         print("Extrapolating with POWER method...")
#         POWER(sys.argv, args)
    
    
elif args.method == "Nakano":
        print("Extrapolating with Nakano method...")
        eq_29(sys.argv, args)