Newer
Older
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Copyright (c) 2017 The Board of Trustees of the University of Illinois
# All rights reserved.
#
# Developed by: Daniel Johnson, E. A. Huerta, Roland Haas
# NCSA Gravity Group
# National Center for Supercomputing Applications
# University of Illinois at Urbana-Champaign
# http://gravity.ncsa.illinois.edu/
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to
# deal with the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
# sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimers.
#
# Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimers in the documentation
# and/or other materials provided with the distribution.
#
# Neither the names of the National Center for Supercomputing Applications,
# University of Illinois at Urbana-Champaign, nor the names of its
# contributors may be used to endorse or promote products derived from this
# Software without specific prior written permission.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# WITH THE SOFTWARE.
# Based off of SimulationTools Mathematica Package
# http://www.simulationtools.org/
import numpy as np
import glob
import os
import h5py
import math
import sys
import warnings
import scipy.optimize
import scipy.interpolate
#-----Function Definitions-----#
def joinDsets(dsets):
"""joints multiple datasets which each have a
time like first column, eg iteration number of
time. Removes overlapping segments, keeping the
last segment.
dsets = iterable of 2d array like objects with data"""
# joins multiple datasets of which the first column is assumed to be "time"
if(not dsets):
return None
length = 0
for d in dsets:
length += len(d)
newshape = list(dsets[0].shape)
newshape[0] = length
dset = np.empty(shape=newshape, dtype=dsets[0].dtype)
usedlength = 0
for d in dsets:
insertpointidx = np.where(dset[0:usedlength,0] >= d[0,0])
if(insertpointidx[0].size):
insertpoint = insertpointidx[0][0]
else:
insertpoint = usedlength
newlength = insertpoint+len(d)
dset[insertpoint:newlength] = d
usedlength = newlength
return dset[0:usedlength]
"""load HDF5 timeseries data and concatenate the content of multiple files
nameglob = a shell glob that matches all files to be loaded,
files are sorted alphabetically
series = HDF5 dataset name of dataset to load from files"""
dsets = list()
for fn in sorted(glob.glob(nameglob)):
fh = h5py.File(fn, "r")
dsets.append(fh[series])
return joinDsets(dsets)
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#Convert radial to tortoise coordinates
def RadialToTortoise(r, M):
"""
Convert the radial coordinate to the tortoise coordinate
r = radial coordinate
M = ADMMass used to convert coordinate
return = tortoise coordinate value
"""
return r + 2. * M * math.log( r / (2. * M) - 1.)
#Convert modified psi4 to strain
def psi4ToStrain(mp_psi4, f0):
"""
Convert the input mp_psi4 data to the strain of the gravitational wave
mp_psi4 = Weyl scalar result from simulation
f0 = cutoff frequency
return = strain (h) of the gravitational wave
"""
#TODO: Check for uniform spacing in time
t0 = mp_psi4[:, 0]
list_len = len(t0)
complexPsi = np.zeros(list_len, dtype=np.complex_)
complexPsi = mp_psi4[:, 1]+1.j*mp_psi4[:, 2]
freq, psif = myFourierTransform(t0, complexPsi)
dhf = ffi(freq, psif, f0)
hf = ffi(freq, dhf, f0)
time, h = myFourierTransformInverse(freq, hf, t0[0])
hTable = np.column_stack((time, h))
return hTable
#Fixed frequency integration
# See https://arxiv.org/abs/1508.07250 for method
def ffi(freq, data, f0):
"""
Integrates the data according to the input frequency and cutoff frequency
freq = fourier transform frequency
data = input on which ffi is performed
f0 = cutoff frequency
"""
f1 = f0/(2*math.pi)
fs = freq
gs = data
mask1 = (np.sign((fs/f1) - 1) + 1)/2.
mask2 = (np.sign((-fs/f1) - 1) + 1)/2.
mask = 1 - (1 - mask1) * (1 - mask2)
fs2 = mask * fs + (1-mask) * f1 * np.sign(fs - np.finfo(float).eps)
new_gs = gs/(2*math.pi*1.j*fs2)
return new_gs
#Fourier Transform
def myFourierTransform(t0, complexPsi):
"""
Transforms the complexPsi data to frequency space
t0 = time data points
complexPsi = data points of Psi to be transformed
"""
psif = np.fft.fft(complexPsi, norm="ortho")
l = len(complexPsi)
n = int(math.floor(l/2.))
newpsif = psif[l-n:]
newpsif = np.append(newpsif, psif[:l-n])
T = np.amin(np.diff(t0))*l
freq = range(-n, l-n)/T
return freq, newpsif
#Inverse Fourier Transform
def myFourierTransformInverse(freq, hf, t0):
l = len(hf)
n = int(math.floor(l/2.))
newhf = hf[n:]
newhf = np.append(newhf, hf[:n])
amp = np.fft.ifft(newhf, norm="ortho")
df = np.amin(np.diff(freq))
time = t0 + range(0, l)/(df*l)
return time, amp
def angular_momentum(x, q, m, chi1, chi2, LInitNR):
eta = q/(1.+q)**2
m1 = (1.+math.sqrt(1.-4.*eta))/2.
m2 = m - m1
S1 = m1**2. * chi1
S2 = m2**2. * chi2
Sl = S1+S2
Sigmal = S2/m2 - S1/m1
DeltaM = m1 - m2
mu = eta
nu = eta
GammaE = 0.5772156649;
e4 = -(123671./5760.)+(9037.* math.pi**2.)/1536.+(896.*GammaE)/15.+(-(498449./3456.)+(3157.*math.pi**2.)/576.)*nu+(301. * nu**2.)/1728.+(77.*nu**3.)/31104.+(1792. *math.log(2.))/15.
e5 = -55.13
j4 = -(5./7.)*e4+64./35.
j5 = -(2./3.)*e5-4988./945.-656./135. * eta;
a1 = -2.18522;
a2 = 1.05185;
a3 = -2.43395;
a4 = 0.400665;
a5 = -5.9991;
CapitalDelta = (1.-4.*eta)**0.5
l = (eta/x**(1./2.)*(
1. +
x*(3./2. + 1./6.*eta) +
x**2. *(27./8. - 19./8.*eta + 1./24.*eta**2.) +
x**3. *(135./16. + (-6889./144. + 41./24. * math.pi**2.)*eta + 31./24.*eta**2. + 7./1296.*eta**3.) +
x**4. *((2835./128.) + eta*j4 - (64.*eta*math.log(x)/3.))+
x**5. *((15309./256.) + eta*j5 + ((9976./105.) + (1312.*eta/15.))*eta*math.log(x))+
x**(3./2.)*(-(35./6.)*Sl - 5./2.*DeltaM* Sigmal) +
x**(5./2.)*((-(77./8.) + 427./72.*eta)*Sl + DeltaM* (-(21./8.) + 35./12.*eta)*Sigmal) +
x**(7./2.)*((-(405./16.) + 1101./16.*eta - 29./16.*eta**2.)*Sl + DeltaM*(-(81./16.) + 117./4.*eta - 15./16.*eta**2.)*Sigmal) +
(1./2. + (m1 - m2)/2. - eta)* chi1**2. * x**2. +
(1./2. + (m2 - m1)/2. - eta)* chi2**2. * x**2. +
2.*eta*chi1*chi2*x**2. +
((13.*chi1**2.)/9. +
(13.*CapitalDelta*chi1**2.)/9. -
(55.*nu*chi1**2.)/9. -
29./9.*CapitalDelta*nu*chi1**2. +
(14.*nu**2. *chi1**2.)/9. +
(7.*nu*chi1*chi2)/3. +
17./18.* nu**2. * chi1 * chi2 +
(13.* chi2**2.)/9. -
(13.*CapitalDelta*chi2**2.)/9. -
(55.*nu*chi2**2.)/9. +
29./9.*CapitalDelta*nu*chi2**2. +
(14.*nu**2. * chi2**2.)/9.)
* x**3.))
return l - LInitNR
#Get Energy
def get_energy(sim):
"""
Save the energy radiated energy
sim = string of simulation
"""
python_strain = np.loadtxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l2_m2.dat")
val = np.zeros(len(python_strain))
val = val.astype(np.complex_)
cur_max_time = python_strain[0][0]
cur_max_amp = abs(pow(python_strain[0][1], 2))
# TODO: rewrite as array operations (use np.argmax)
for i in python_strain[:]:
cur_time = i[0]
cur_amp = abs(pow(i[1], 2))
if(cur_amp>cur_max_amp):
cur_max_amp = cur_amp
cur_max_time = cur_time
max_idx = 0
for i in range(0, len(python_strain[:])):
if(python_strain[i][1] > python_strain[max_idx][1]):
max_idx = i
paths = glob.glob("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l[2-4]_m*.dat")
for path in paths:
python_strain = np.loadtxt(path)
t = python_strain[:, 0]
t = t.astype(np.complex_)
h = python_strain[:, 1] + 1j * python_strain[:, 2]
dh = np.zeros(len(t), dtype=np.complex_)
for i in range(0, len(t)-1):
dh[i] = ((h[i+1] - h[i])/(t[i+1] - t[i]))
dh[len(t)-1] = dh[len(t)-2]
dh_conj = np.conj(dh)
prod = np.multiply(dh, dh_conj)
local_val = np.zeros(len(t))
local_val = local_val.astype(np.complex_)
# TODO: rewrite as array notation using np.cumtrapz
for i in range(0, len(t)):
local_val[i] = np.trapz(prod[:i], x=(t[:i]))
val += local_val
val *= 1/(16 * math.pi)
np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_energy.dat", val)
Brockton Brendal
committed
# -----------------------------------------------------------------------------
# POWER Method
# -----------------------------------------------------------------------------
def POWER(argv, args):
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
#Get cutoff frequency
def getCutoffFrequency(sim_name):
"""
Determine cutoff frequency of simulation
sim_name = string of simulation
return = cutoff frequency
"""
filename = main_dir+"/output-0000/%s.par" % (sim_name)
with open(filename) as file:
contents = file.readlines()
for line in contents:
line_elems = line.split(" ")
if(line_elems[0] == "TwoPunctures::par_b"):
par_b = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::center_offset[0]"):
center_offset = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::par_P_plus[1]"):
pyp = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::par_P_minus[1]"):
pym = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::target_M_plus"):
m1 = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::target_M_minus"):
m2 = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::par_S_plus[2]"):
S1 = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::par_S_minus[2]"):
S2 = float(line_elems[-1])
xp = par_b + center_offset
xm = -1*par_b + center_offset
LInitNR = xp*pyp + xm*pym
M = m1+m2
q = m1/m2
chi1 = S1/m1**2
chi2 = S2/m2**2
# .014 is the initial guess for cutoff frequency
omOrbPN = scipy.optimize.fsolve(angular_momentum, .014, (q, M, chi1, chi2, LInitNR))[0]
omOrbPN = omOrbPN**(3./2.)
omGWPN = 2. * omOrbPN
omCutoff = 0.75 * omGWPN
return omCutoff
#Get angular momentum
def get_angular_momentum(python_strain):
"""
Save the energy radiated angular momentum
sim = string of simulation
"""
python_strain = np.loadtxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l2_m2.dat")
val = np.zeros(len(python_strain))
val = val.astype(np.complex_)
cur_max_time = python_strain[0][0]
cur_max_amp = abs(pow(python_strain[0][1], 2))
# TODO: rewrite as array operations (use np.argmax)
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
for i in python_strain[:]:
cur_time = i[0]
cur_amp = abs(pow(i[1], 2))
if(cur_amp>cur_max_amp):
cur_max_amp = cur_amp
cur_max_time = cur_time
max_idx = 0
for i in range(0, len(python_strain[:])):
if(python_strain[i][1] > python_strain[max_idx][1]):
max_idx = i
paths = glob.glob("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l[2-4]_m*.dat")
for path in paths:
python_strain = np.loadtxt(path)
t = python_strain[:, 0]
t = t.astype(np.complex_)
h = python_strain[:, 1] + 1j * python_strain[:, 2]
dh = np.zeros(len(t), dtype=np.complex_)
# TODO: rewrite using array notation
for i in range(0, len(t)-1):
dh[i] = ((h[i+1] - h[i])/(t[i+1] - t[i]))
dh[len(t)-1] = dh[len(t)-2]
dh_conj = np.conj(dh)
prod = np.multiply(h, dh_conj)
local_val = np.zeros(len(t))
local_val = local_val.astype(np.complex_)
# TODO: rewrite as array notation using np.cumtrapz. Move atoi call out of inner loop.
local_val[i] = scipy.integrate.cumtrapz(prod[:i], x=(t[:i])) * int(((path.split("_")[-1]).split("m")[-1]).split(".")[0])
val += local_val
val *= 1/(16 * math.pi)
np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_angular_momentum.dat", val)
#-----Main-----#
if __name__ == "__main__":
if(len(argv) < 2):
print("Pass in the number n of the n innermost detector radii to be used in the extrapolation (optional, default=all) and the simulation folders (e.g., ./power.py 6 ./simulations/J0040_N40 /path/to/my_simulation_folder).")
sys.exit()
elif(os.path.isdir(argv[2])):
radiiUsedForExtrapolation = 7 #use the first n radii available i.e. no radii specified, defaults to 7
paths = argv[2:]
elif(not os.path.isdir(argv[2])):
radiiUsedForExtrapolation = int(argv[2]) #use the first n radii available
if(radiiUsedForExtrapolation < 1 or radiiUsedForExtrapolation > 7):
print("Invalid specified radii number")
sys.exit()
paths = argv[4:]
for sim_path in paths:
main_dir = sim_path
sim = os.path.split(sim_path)[-1]
simdirs = main_dir+"/output-????/%s/" % (sim)
f0 = getCutoffFrequency(sim)
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
#Get simulation total mass
ADMMass = None
two_punctures_files = sorted(glob.glob(main_dir+"/output-????/%s/TwoPunctures.bbh" % (sim)))
out_files = sorted(glob.glob(main_dir+"/output-????/%s.out" % (sim)))
par_files = sorted(glob.glob(main_dir+"/output-????/%s.par" % (sim)))
if(two_punctures_files):
two_punctures_file = two_punctures_files[0]
with open(two_punctures_file) as file:
contents = file.readlines()
for line in contents:
line_elems = line.split(" ")
if(line_elems[0] == "initial-ADM-energy"):
ADMMass = float(line_elems[-1])
elif(out_files):
out_file = out_files[0]
with open(out_file) as file:
contents = file.readlines()
for line in contents:
m = re.match("INFO \(TwoPunctures\): The total ADM mass is (.*)", line)
if(m):
ADMMass = float(m.group(1))
elif(par_files):
par_file = par_files[0]
print("Not yet implemented")
raise ValueError
else:
print("Cannot determine ADM mass")
raise ValueError
#Create data directories
main_directory = "Extrapolated_Strain"
sim_dir = main_directory+"/"+sim
if not os.path.exists(main_directory):
os.makedirs(main_directory)
if not os.path.exists(sim_dir):
os.makedirs(sim_dir)
# TODO: fix this. It will fail if output-0000 does not contain any mp
# output and also will open the output files multiple times
fn = sorted(glob.glob(simdirs+"mp_psi4.h5"))[0]
with h5py.File(fn, "r") as fh:
# get all radii
radii = set()
modes = set()
dsets = dict()
for dset in fh:
# TODO: extend Multipole to save the radii as attributes and/or
# use a group structure in the hdf5 file
m = re.match(r'l(\d*)_m(-?\d*)_r(\d*\.\d)', dset)
if m:
radius = float(m.group(3))
mode = (int(m.group(1)), int(m.group(2)))
modes.add(mode)
radii.add(radius)
dsets[(radius, mode)] = dset
modes = sorted(modes)
radii = sorted(radii)
Brockton Brendal
committed
Brockton Brendal
committed
for (l,m) in modes: # 25 times through the loop, from (1,1) to (4,4)
#Get Tortoise Coordinate
mp_psi4_vars = []
tortoise = []
strain = []
phase = []
amp = []
for i in range(len(radii)): # so 7 times through each mode at each of the 7 radii
#------------------------------------------------
# Read in HDF5 data
#------------------------------------------------
radius = radii[i]
psi4dsetname = dsets[(radius, (l,m))]
mp_psi4 = loadHDF5Series(simdirs+"mp_psi4.h5", psi4dsetname)
mp_psi4_vars.append(mp_psi4)
#------------------------------------------------
# Coordinate conversion to Tortoise
#------------------------------------------------
tortoise.append(-RadialToTortoise(radius, ADMMass))
#-----------------------------------------
# Prepare for conversion to strain
#-----------------------------------------
#Get modified Psi4 (Multiply real and imaginary psi4 columns by radii and add the tortoise coordinate to the time column)
mp_psi4_vars[i][:, 0] += tortoise[i]
mp_psi4_vars[i][:, 1] *= radii[i]
mp_psi4_vars[i][:, 2] *= radii[i]
#Check for psi4 amplitude going to zero
cur_psi4_amp = np.sqrt(mp_psi4_vars[i][0, 1]**2 + mp_psi4_vars[i][0, 2]**2)
min_psi4_amp = cur_psi4_amp
# TODO: use array notation for this since it finds the minimum amplitude
for j in range(0, len(mp_psi4_vars[i][:, 0])):
cur_psi4_amp = np.sqrt(mp_psi4_vars[i][j, 1]**2 + mp_psi4_vars[i][j, 2]**2)
if(cur_psi4_amp < min_psi4_amp):
min_psi4_amp = cur_psi4_amp
if(min_psi4_amp < np.finfo(float).eps and l >= 2):
print("The psi4 amplitude is near zero. The phase is ill-defined.")
#Fixed-frequency integration twice to get strain
#-----------------------------------------------------------------
# Strain Conversion
#-----------------------------------------------------------------
hTable = psi4ToStrain(mp_psi4_vars[i], f0) # table of strain
time = hTable[:, 0]
h = hTable[:, 1]
hplus = h.real
hcross = h.imag
newhTable = np.column_stack((time, hplus, hcross))
warnings.filterwarnings('ignore')
finalhTable = newhTable.astype(float)
np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_strain_at_"+str(radii[i])+"_l"+str(l)+"_m"+str(m)+".dat", finalhTable)
strain.append(finalhTable)
#-------------------------------------------------------------------
# Analysis of Strain
#-------------------------------------------------------------------
#Get phase and amplitude of strain
h_phase = np.unwrap(np.angle(h))
# print(len(h_phase), "h_phase length")
# print(len(time), "time length")
angleTable = np.column_stack((time, h_phase)) ### start here
angleTable = angleTable.astype(float) ### b/c t is defined based on
phase.append(angleTable) ### time here
h_amp = np.absolute(h)
ampTable = np.column_stack((time, h_amp))
ampTable = ampTable.astype(float)
amp.append(ampTable)
#----------------------------------------------------------------------
# Extrapolation
#----------------------------------------------------------------------
#Interpolate phase and amplitude
t = phase[0][:, 0]
# print(len(t), "length of t")
last_t = phase[radiiUsedForExtrapolation - 1][-1, 0]
last_index = 0;
# TODO: use array notation for this (this is a boolean
# plus a first_of or so)
for i in range(0, len(phase[0][:, 0])):
if(t[i] > last_t):
last_index = i
break
last_index = last_index-1
t = phase[0][0:last_index, 0] ### array gets shrunk here ... must do it for a reason
# print(len(t), "length of t")
# print("t" , t)
dts = t[1:] - t[:-1]
dt = float(np.amin(dts))
t = np.arange(phase[0][0, 0], phase[0][last_index, 0], dt)
interpolation_order = 9
for i in range(0, radiiUsedForExtrapolation):
interp_function = scipy.interpolate.interp1d(phase[i][:, 0], phase[i][:, 1], kind=interpolation_order)
resampled_phase_vals = interp_function(t)
# try and keep all initial phases within 2pi of each other
if(i > 0):
phase_shift = round((resampled_phase_vals[0] - phase[0][0,1])/(2.*math.pi))*2.*math.pi
resampled_phase_vals -= phase_shift
phase[i] = np.column_stack((t, resampled_phase_vals))
interp_function = scipy.interpolate.interp1d(amp[i][:, 0], amp[i][:, 1], kind=interpolation_order)
resampled_amp_vals = interp_function(t)
amp[i] = np.column_stack((t, resampled_amp_vals))
#Extrapolate
phase_extrapolation_order = 1
amp_extrapolation_order = 2
radii = np.asarray(radii, dtype=float)
radii = radii[0:radiiUsedForExtrapolation]
# TODO: replace by np.ones (which is all it does anyway)
A_phase = np.power(radii, 0)
A_amp = np.power(radii, 0)
for i in range(1, phase_extrapolation_order+1):
A_phase = np.column_stack((A_phase, np.power(radii, -1*i*math.pi)))
for i in range(1, amp_extrapolation_order+1):
A_amp = np.column_stack((A_amp, np.power(radii, -1*i*math.pi)))
radially_extrapolated_phase = np.empty(0)
radially_extrapolated_amp = np.empty(0)
for i in range(0, len(t)):
b_phase = np.empty(0)
for j in range(0, radiiUsedForExtrapolation):
b_phase = np.append(b_phase, phase[j][i, 1])
x_phase = np.linalg.lstsq(A_phase, b_phase)[0]
radially_extrapolated_phase = np.append(radially_extrapolated_phase, x_phase[0])
b_amp = np.empty(0)
for j in range(0, radiiUsedForExtrapolation):
b_amp = np.append(b_amp, amp[j][i, 1])
x_amp = np.linalg.lstsq(A_amp, b_amp)[0]
radially_extrapolated_amp = np.append(radially_extrapolated_amp, x_amp[0])
radially_extrapolated_h_plus = np.empty(0)
radially_extrapolated_h_cross = np.empty(0)
for i in range(0, len(radially_extrapolated_amp)):
radially_extrapolated_h_plus = np.append(radially_extrapolated_h_plus, radially_extrapolated_amp[i] * math.cos(radially_extrapolated_phase[i]))
radially_extrapolated_h_cross = np.append(radially_extrapolated_h_cross, radially_extrapolated_amp[i] * math.sin(radially_extrapolated_phase[i]))
np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l"+str(l)+"_m"+str(m)+".dat", np.column_stack((t, radially_extrapolated_h_plus, radially_extrapolated_h_cross)))
np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_amplitude_l"+str(l)+"_m"+str(m)+".dat", np.column_stack((t, radially_extrapolated_amp)))
np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_phase_l"+str(l)+"_m"+str(m)+".dat", np.column_stack((t, radially_extrapolated_phase[:])))
get_energy(sim)
get_angular_momentum(sim)
Brockton Brendal
committed
# -----------------------------------------------------------------------------
# Nakano Method
# -----------------------------------------------------------------------------
Brockton Brendal
committed
def psi4ToStrain2(mp_psi4, f0): # WIP - will eventually replace scipy.integrate.cumtrapz
"""
Convert the input mp_psi4 data to the strain of the gravitational wave
mp_psi4 = Weyl scalar result from simulation
f0 = cutoff frequency
return = strain (h) of the gravitational wave
"""
#TODO: Check for uniform spacing in time
t0 = mp_psi4[:, 0]
list_len = len(t0)
complexPsi = np.zeros(list_len, dtype=np.complex_)
complexPsi = mp_psi4[:, 1]+1.j*mp_psi4[:, 2]
freq, psif = myFourierTransform(t0, complexPsi)
hf = ffi(freq, psif, f0)
time, h = myFourierTransformInverse(freq, hf, t0[0])
hTable = np.column_stack((time, h))
return hTable
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
#Get cutoff frequency
def getCutoffFrequency(sim_name):
"""
Determine cutoff frequency of simulation
sim_name = string of simulation
return = cutoff frequency
"""
filename = main_dir+"/output-0000/%s.par" % (sim_name)
with open(filename) as file:
contents = file.readlines()
for line in contents:
line_elems = line.split(" ")
if(line_elems[0] == "TwoPunctures::par_b"):
par_b = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::center_offset[0]"):
center_offset = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::par_P_plus[1]"):
pyp = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::par_P_minus[1]"):
pym = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::target_M_plus"):
m1 = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::target_M_minus"):
m2 = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::par_S_plus[2]"):
S1 = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::par_S_minus[2]"):
S2 = float(line_elems[-1])
xp = par_b + center_offset
xm = -1*par_b + center_offset
LInitNR = xp*pyp + xm*pym
M = m1+m2
q = m1/m2
chi1 = S1/m1**2
chi2 = S2/m2**2
# .014 is the initial guess for cutoff frequency
omOrbPN = scipy.optimize.fsolve(angular_momentum, .014, (q, M, chi1, chi2, LInitNR))[0]
omOrbPN = omOrbPN**(3./2.)
omGWPN = 2. * omOrbPN
omCutoff = 0.75 * omGWPN
return omCutoff
### Finding the path in the command line command
if len(argv) < 5:
print("Error: Please specify mode...e.g. 'power.py -m 2,2 Nakano [simpath]' for the 2,2 mode")
sys.exit()
paths = argv[4]
main_dir = paths
sim = os.path.split(paths)[-1]
simdirs = main_dir+"/output-????/%s/" % (sim)
### Setting up directory for saving the file(s) at the end ###
main_directory = "Extrapolated_Strain(Nakano_Kerr)"
sim_dir = main_directory+"/"+sim
if not os.path.exists(main_directory):
os.makedirs(main_directory)
if not os.path.exists(sim_dir):
os.makedirs(sim_dir)
### ---------
radii_list = [100.00 , 115.00 , 136.00 , 167.00, 214.00 , 300.00 , 500.00]
for i in radii_list:
landm = argv[2]
landm = landm.split(',')
l = int(landm[0])
m = int(landm[1])
radius = float(i)
if m > l: ### Fail if m > l
print("Error: %s is a non-physical mode" % (landm))
sys.exit()
Brockton Brendal
committed
modes = "l%d_m%d_r%.2f" %(l,m,radius)
ar = loadHDF5Series(simdirs+"mp_psi4.h5" , modes) # loads HDF5 Series from file mp_psi4.h5, specifically the "l%d_m%d_r100.00" ones ... let's loop this over all radii
t = ar[:,0] # 1st column of ar, time data points
psi = ar[:,1] # 2nd column of ar, data points for psi
impsi = ar[:, 2] # 3rd column of ar, data points for imaginary psi
s_in = scipy.integrate.cumtrapz(psi,t) # Integrates psi along time, i.e. psi(t)
ims_in = scipy.integrate.cumtrapz(impsi,t) # Integrates impsi along time, i.e. impsi(t)
Brockton Brendal
committed
s_in = s_in - s_in[-1]
ims_in = ims_in - ims_in[-1]
d_in = scipy.integrate.cumtrapz(s_in,t[1:])
Brockton Brendal
committed
d_in = d_in - d_in[-1]
imd_in = scipy.integrate.cumtrapz(ims_in,t[1:])
Brockton Brendal
committed
imd_in = imd_in - imd_in[-1]
mass_path = glob.glob(simdirs)
A_val = np.loadtxt(mass_path[-1]+"quasilocalmeasures-qlm_scalars..asc") ## For mass calculation
r = radius
M = A_val[:,58][-1]
a = (A_val[:,37]/A_val[:,58])[-1]
Brockton Brendal
committed
modes_a = "l%d_m%d_r%.2f" %(l+1, m, radius) # "top" modes
ar_a = loadHDF5Series(simdirs+'mp_psi4.h5' , modes_a)
modes_b = "l%d_m%d_r%.2f" %(l-1, m, radius) # "bottom" modes
t_a = ar_a[:,0]
psi_a = ar_a[:,1]
impsi_a = ar_a[:,2]
t_b = t_a
Brockton Brendal
committed
if m > l-1: # if m is greater than the bottom mode...
psi_b = np.zeros(len(psi_a)) # ...fill psi_b and impsi_b arrays with zeros (mode is unphysical)
impsi_b = np.zeros(len(impsi_a))
Brockton Brendal
committed
else:
ar_b = loadHDF5Series(simdirs+'mp_psi4.h5' , modes_b)
psi_b = ar_b[:,1]
impsi_b = ar_b[:,2]
Brockton Brendal
committed
Brockton Brendal
committed
A = 1-(2*M/r)
a_1 = r
a_2 = ((l-1)*(l+2))/(2*r)
a_3 = ((l-1)*(l+2)*(l**2 + l -4))/(8*r*r)
B = ((0+a*2j)/((l+1)**2))*((((l+3)*(l-1)*(l+m+1)*(l-m+1))/((2*l+1)*(2*l+3)))**(1/2))
b_1 = r
b_2 = l*(l+3)
C = ((0+a*2j)/((l)**2))*((((l+2)*(l-2)*(l+m)*(l-m))/((2*l-1)*(2*l+1)))**(1/2))
c_1 = r
c_2 = (l-2)*(l+1)
ans = A*(a_1*psi[2:] - a_2*s_in[1:] + a_3*d_in) + B*(b_1*np.gradient(psi_a, t_a)[2:] - b_2*psi_a[2:]) - C*(c_1*np.gradient(psi_b, t_b)[2:] - c_2*psi_b[2:])
imans = A*(a_1*impsi[2:] - a_2*ims_in[1:] + a_3*imd_in) + B*(b_1*np.gradient(impsi_a, t_a)[2:] - b_2*impsi_a[2:]) - C*(c_1*np.gradient(impsi_b, t_b)[2:] - c_2*impsi_b[2:])
f0 = getCutoffFrequency(sim)
length = len(ans)
some_zeros = np.zeros(length, dtype = np.complex_)
print("len(t):",len(t))
print("len(some_zeros):",len(some_zeros))
mp_psi4 = np.column_stack((t[:-2], ans, some_zeros))
immp_psi4 = np.column_stack((t[:-2], imans, some_zeros))
f1 = psi4ToStrain(mp_psi4, f0)
imf1 = psi4ToStrain(immp_psi4, f0)
f3_cmp = f1 + imf1*.1j
# f3_cmp = f2 + imf2*1j
imf3 = f3_cmp.imag
f3 = f3_cmp.real
complex_psi = f3 + 1j*imf3
Brockton Brendal
committed
np.savetxt("./Extrapolated_Strain(Nakano_Kerr)/"+sim+"/"+sim+"_f2_l%d_m%d_r%.2f.dat" %(l, m, radius) , np.column_stack((t[4:] , complex_psi.real[:-2] , complex_psi.imag[:-2])))
# -----------------------------------------------------------------------------
def dir_path(string):
if os.path.isdir(string):
return string
else:
print("Not a directory: %s" %(string))
# raise NotADirectoryError(string)
parser = argparse.ArgumentParser(description='Choose Extrapolation method')
parser.add_argument("method" , choices=["POWER" , "Nakano"] , help="Extrapolation method to be used here")
parser.add_argument('-r', "--radii" , type=int , help="For POWER method; Number of radii to be used", default=7)
parser.add_argument('-m' , "--modes" , type=str , help="For Nakano method; modes to use, l,m")
parser.add_argument("path" , type=dir_path , help="Simulation to be used here")
if args.method == "POWER":
print("Extrapolating with POWER method...")
POWER(sys.argv, args)
Brockton Brendal
committed
print("Extrapolating with Nakano method...")
eq_29(sys.argv, args)