Newer
Older
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Copyright (c) 2017 The Board of Trustees of the University of Illinois
# All rights reserved.
#
# Developed by: Daniel Johnson, E. A. Huerta, Roland Haas
# NCSA Gravity Group
# National Center for Supercomputing Applications
# University of Illinois at Urbana-Champaign
# http://gravity.ncsa.illinois.edu/
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to
# deal with the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
# sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimers.
#
# Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimers in the documentation
# and/or other materials provided with the distribution.
#
# Neither the names of the National Center for Supercomputing Applications,
# University of Illinois at Urbana-Champaign, nor the names of its
# contributors may be used to endorse or promote products derived from this
# Software without specific prior written permission.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# WITH THE SOFTWARE.
# Based off of SimulationTools Mathematica Package
# http://www.simulationtools.org/
import numpy as np
import glob
import os
import h5py
import string
import math
import sys
import warnings
import scipy.optimize
import scipy.interpolate
#-----Function Definitions-----#
#Function used in getting psi4 from simulation
def joinDsets(dsets):
"""joints multiple datasets which each have a
time like first column, eg iteration number of
time. Removes overlapping segments, keeping the
last segment.
dsets = iterable of 2d array like objects with data"""
# joins multiple datasets of which the first column is assumed to be "time"
if(not dsets):
return None
length = 0
for d in dsets:
length += len(d)
newshape = list(dsets[0].shape)
newshape[0] = length
dset = np.empty(shape=newshape, dtype=dsets[0].dtype)
usedlength = 0
for d in dsets:
insertpointidx = np.where(dset[0:usedlength,0] >= d[0,0])
if(insertpointidx[0].size):
insertpoint = insertpointidx[0][0]
else:
insertpoint = usedlength
newlength = insertpoint+len(d)
dset[insertpoint:newlength] = d
usedlength = newlength
return dset[0:usedlength]
#Function used in getting psi4 from simulation
def loadHDF5Series(nameglob, series):
"""load HDF5 timeseries data and concatenate the content of multiple files
nameglob = a shell glob that matches all files to be loaded,
files are sorted alphabetically
series = HDF5 dataset name of dataset to load from files"""
dsets = list()
for fn in sorted(glob.glob(nameglob)):
fh = h5py.File(fn, "r")
dsets.append(fh[series])
return joinDsets(dsets)
#Convert radial to tortoise coordinates
def RadialToTortoise(r, M):
"""
Convert the radial coordinate to the tortoise coordinate
r = radial coordinate
M = ADMMass used to convert coordinate
return = tortoise coordinate value
"""
return r + 2. * M * math.log( r / (2. * M) - 1.)
#Convert modified psi4 to strain
def psi4ToStrain(mp_psi4, f0):
"""
Convert the input mp_psi4 data to the strain of the gravitational wave
mp_psi4 = Weyl scalar result from simulation
f0 = cutoff frequency
return = strain (h) of the gravitational wave
"""
#TODO: Check for uniform spacing in time
t0 = mp_psi4[:, 0]
list_len = len(t0)
complexPsi = np.zeros(list_len, dtype=np.complex_)
complexPsi = mp_psi4[:, 1]+1.j*mp_psi4[:, 2]
freq, psif = myFourierTransform(t0, complexPsi)
dhf = ffi(freq, psif, f0)
hf = ffi(freq, dhf, f0)
time, h = myFourierTransformInverse(freq, hf, t0[0])
hTable = np.column_stack((time, h))
return hTable
#Fixed frequency integration
# See https://arxiv.org/abs/1508.07250 for method
def ffi(freq, data, f0):
"""
Integrates the data according to the input frequency and cutoff frequency
freq = fourier transform frequency
data = input on which ffi is performed
f0 = cutoff frequency
"""
f1 = f0/(2*math.pi)
fs = freq
gs = data
mask1 = (np.sign((fs/f1) - 1) + 1)/2.
mask2 = (np.sign((-fs/f1) - 1) + 1)/2.
mask = 1 - (1 - mask1) * (1 - mask2)
fs2 = mask * fs + (1-mask) * f1 * np.sign(fs - np.finfo(float).eps)
new_gs = gs/(2*math.pi*1.j*fs2)
return new_gs
#Fourier Transform
def myFourierTransform(t0, complexPsi):
"""
Transforms the complexPsi data to frequency space
t0 = time data points
complexPsi = data points of Psi to be transformed
"""
psif = np.fft.fft(complexPsi, norm="ortho")
l = len(complexPsi)
n = int(math.floor(l/2.))
newpsif = psif[l-n:]
newpsif = np.append(newpsif, psif[:l-n])
T = np.amin(np.diff(t0))*l
freq = range(-n, l-n)/T
return freq, newpsif
#Inverse Fourier Transform
def myFourierTransformInverse(freq, hf, t0):
l = len(hf)
n = int(math.floor(l/2.))
newhf = hf[n:]
newhf = np.append(newhf, hf[:n])
amp = np.fft.ifft(newhf, norm="ortho")
df = np.amin(np.diff(freq))
time = t0 + range(0, l)/(df*l)
return time, amp
eta = q/(1.+q)**2
m1 = (1.+math.sqrt(1.-4.*eta))/2.
m2 = m - m1
S1 = m1**2. * chi1
S2 = m2**2. * chi2
Sl = S1+S2
Sigmal = S2/m2 - S1/m1
DeltaM = m1 - m2
mu = eta
nu = eta
GammaE = 0.5772156649;
e4 = -(123671./5760.)+(9037.* math.pi**2.)/1536.+(896.*GammaE)/15.+(-(498449./3456.)+(3157.*math.pi**2.)/576.)*nu+(301. * nu**2.)/1728.+(77.*nu**3.)/31104.+(1792. *math.log(2.))/15.
e5 = -55.13
j4 = -(5./7.)*e4+64./35.
j5 = -(2./3.)*e5-4988./945.-656./135. * eta;
a1 = -2.18522;
a2 = 1.05185;
a3 = -2.43395;
a4 = 0.400665;
a5 = -5.9991;
CapitalDelta = (1.-4.*eta)**0.5
l = (eta/x**(1./2.)*(
1. +
x*(3./2. + 1./6.*eta) +
x**2. *(27./8. - 19./8.*eta + 1./24.*eta**2.) +
x**3. *(135./16. + (-6889./144. + 41./24. * math.pi**2.)*eta + 31./24.*eta**2. + 7./1296.*eta**3.) +
x**4. *((2835./128.) + eta*j4 - (64.*eta*math.log(x)/3.))+
x**5. *((15309./256.) + eta*j5 + ((9976./105.) + (1312.*eta/15.))*eta*math.log(x))+
x**(3./2.)*(-(35./6.)*Sl - 5./2.*DeltaM* Sigmal) +
x**(5./2.)*((-(77./8.) + 427./72.*eta)*Sl + DeltaM* (-(21./8.) + 35./12.*eta)*Sigmal) +
x**(7./2.)*((-(405./16.) + 1101./16.*eta - 29./16.*eta**2.)*Sl + DeltaM*(-(81./16.) + 117./4.*eta - 15./16.*eta**2.)*Sigmal) +
(1./2. + (m1 - m2)/2. - eta)* chi1**2. * x**2. +
(1./2. + (m2 - m1)/2. - eta)* chi2**2. * x**2. +
2.*eta*chi1*chi2*x**2. +
((13.*chi1**2.)/9. +
(13.*CapitalDelta*chi1**2.)/9. -
(55.*nu*chi1**2.)/9. -
29./9.*CapitalDelta*nu*chi1**2. +
(14.*nu**2. *chi1**2.)/9. +
(7.*nu*chi1*chi2)/3. +
17./18.* nu**2. * chi1 * chi2 +
(13.* chi2**2.)/9. -
(13.*CapitalDelta*chi2**2.)/9. -
(55.*nu*chi2**2.)/9. +
29./9.*CapitalDelta*nu*chi2**2. +
(14.*nu**2. * chi2**2.)/9.)
* x**3.))
#Get cutoff frequency
def getCutoffFrequency(sim_name):
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
"""
Determine cutoff frequency of simulation
sim_name = string of simulation
return = cutoff frequency
"""
filename = main_dir+"/output-0000/%s.par" % (sim_name)
with open(filename) as file:
contents = file.readlines()
for line in contents:
line_elems = line.split(" ")
if(line_elems[0] == "TwoPunctures::par_b"):
par_b = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::center_offset[0]"):
center_offset = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::par_P_plus[1]"):
pyp = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::par_P_minus[1]"):
pym = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::target_M_plus"):
m1 = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::target_M_minus"):
m2 = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::par_S_plus[2]"):
S1 = float(line_elems[-1])
if(line_elems[0] == "TwoPunctures::par_S_minus[2]"):
S2 = float(line_elems[-1])
xp = par_b + center_offset
xm = -1*par_b + center_offset
LInitNR = xp*pyp + xm*pym
M = m1+m2
q = m1/m2
chi1 = S1/m1**2
chi2 = S2/m2**2
# .014 is the initial guess for cutoff frequency
omOrbPN = scipy.optimize.fsolve(angular_momentum, .014, (q, M, chi1, chi2, LInitNR))[0]
omOrbPN = omOrbPN**(3./2.)
omGWPN = 2. * omOrbPN
omCutoff = 0.75 * omGWPN
return omCutoff
Daniel Johnson
committed
#Get Energy
def get_energy(sim):
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
"""
Save the energy radiated energy
sim = string of simulation
"""
python_strain = np.loadtxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l2_m2.dat")
val = np.zeros(len(python_strain))
val = val.astype(np.complex_)
cur_max_time = python_strain[0][0]
cur_max_amp = abs(pow(python_strain[0][1], 2))
# TODO: rewrite as array operations (use numpy.argmax)
for i in python_strain[:]:
cur_time = i[0]
cur_amp = abs(pow(i[1], 2))
if(cur_amp>cur_max_amp):
cur_max_amp = cur_amp
cur_max_time = cur_time
max_idx = 0
for i in range(0, len(python_strain[:])):
if(python_strain[i][1] > python_strain[max_idx][1]):
max_idx = i
paths = glob.glob("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l[2-4]_m*.dat")
for path in paths:
python_strain = np.loadtxt(path)
t = python_strain[:, 0]
t = t.astype(np.complex_)
h = python_strain[:, 1] + 1j * python_strain[:, 2]
dh = np.zeros(len(t), dtype=np.complex_)
for i in range(0, len(t)-1):
dh[i] = ((h[i+1] - h[i])/(t[i+1] - t[i]))
dh[len(t)-1] = dh[len(t)-2]
dh_conj = np.conj(dh)
prod = np.multiply(dh, dh_conj)
local_val = np.zeros(len(t))
local_val = local_val.astype(np.complex_)
for i in range(0, len(t)):
local_val[i] = np.trapz(prod[:i], x=(t[:i]))
val += local_val
val *= 1/(16 * math.pi)
np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_energy.dat", val)
Daniel Johnson
committed
#Get angular momentum
def get_angular_momentum(python_strain):
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
"""
Save the energy radiated angular momentum
sim = string of simulation
"""
python_strain = np.loadtxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l2_m2.dat")
val = np.zeros(len(python_strain))
val = val.astype(np.complex_)
cur_max_time = python_strain[0][0]
cur_max_amp = abs(pow(python_strain[0][1], 2))
# TODO: rewrite as array operations (use numpy.argmax)
for i in python_strain[:]:
cur_time = i[0]
cur_amp = abs(pow(i[1], 2))
if(cur_amp>cur_max_amp):
cur_max_amp = cur_amp
cur_max_time = cur_time
max_idx = 0
for i in range(0, len(python_strain[:])):
if(python_strain[i][1] > python_strain[max_idx][1]):
max_idx = i
paths = glob.glob("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l[2-4]_m*.dat")
for path in paths:
python_strain = np.loadtxt(path)
t = python_strain[:, 0]
t = t.astype(np.complex_)
h = python_strain[:, 1] + 1j * python_strain[:, 2]
dh = np.zeros(len(t), dtype=np.complex_)
for i in range(0, len(t)-1):
dh[i] = ((h[i+1] - h[i])/(t[i+1] - t[i]))
dh[len(t)-1] = dh[len(t)-2]
dh_conj = np.conj(dh)
prod = np.multiply(h, dh_conj)
local_val = np.zeros(len(t))
local_val = local_val.astype(np.complex_)
# TODO: rewrite as array notation using numpy.cumtrapz. Move atoi call out of inner loop.
for i in range(0, len(t)):
local_val[i] = np.trapz(prod[:i], x=(t[:i])) * int(((path.split("_")[-1]).split("m")[-1]).split(".")[0])
val += local_val
val *= 1/(16 * math.pi)
np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_angular_momentum.dat", val)
if __name__ == "__main__":
#Initialize simulation data
if(len(sys.argv) < 2):
print("Pass in the number n of the n innermost detector radii to be used in the extrapolation (optional, default=all) and the simulation folders (e.g., ./power.py 6 ./simulations/J0040_N40 /path/to/my_simulation_folder).")
sys.exit()
elif(os.path.isdir(sys.argv[1])):
radiiUsedForExtrapolation = 7 #use the first n radii available
paths = sys.argv[1:]
elif(not os.path.isdir(sys.argv[1])):
radiiUsedForExtrapolation = int(sys.argv[1]) #use the first n radii available
if(radiiUsedForExtrapolation < 1 or radiiUsedForExtrapolation > 7):
print("Invalid specified radii number")
sys.exit()
paths = sys.argv[2:]
for sim_path in paths:
main_dir = sim_path
sim = os.path.split(sim_path)[-1]
simdirs = main_dir+"/output-????/%s/" % (sim)
f0 = getCutoffFrequency(sim)
#Get simulation total mass
ADMMass = None
two_punctures_files = sorted(glob.glob(main_dir+"/output-????/%s/TwoPunctures.bbh" % (sim)))
out_files = sorted(glob.glob(main_dir+"/output-????/%s.out" % (sim)))
par_files = sorted(glob.glob(main_dir+"/output-????/%s.par" % (sim)))
if(two_punctures_files):
two_punctures_file = two_punctures_files[0]
with open(two_punctures_file) as file:
contents = file.readlines()
for line in contents:
line_elems = line.split(" ")
if(line_elems[0] == "initial-ADM-energy"):
ADMMass = float(line_elems[-1])
elif(out_files):
out_file = out_files[0]
with open(out_file) as file:
contents = file.readlines()
for line in contents:
m = re.match("INFO \(TwoPunctures\): The total ADM mass is (.*)", line)
if(m):
ADMMass = float(m.group(1))
elif(par_files):
par_file = par_files[0]
print("Not yet implemented")
raise ValueError
else:
print("Cannot determine ADM mass")
raise ValueError
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
#Create data directories
main_directory = "Extrapolated_Strain"
sim_dir = main_directory+"/"+sim
if not os.path.exists(main_directory):
os.makedirs(main_directory)
if not os.path.exists(sim_dir):
os.makedirs(sim_dir)
# TODO: fix this. It will fail if output-0000 does not contain any mp
# output and also will open the output files multiple times
fn = sorted(glob.glob(simdirs+"mp_psi4.h5"))[0]
with h5py.File(fn, "r") as fh:
# get all radii
radii = set()
modes = set()
dsets = dict()
for dset in fh:
# TODO: extend Multipole to save the radii as attributes and/or
# use a group structure in the hdf5 file
m = re.match(r'l(\d*)_m(-?\d*)_r(\d*\.\d)', dset)
if m:
radius = float(m.group(3))
mode = (int(m.group(1)), int(m.group(2)))
modes.add(mode)
radii.add(radius)
dsets[(radius, mode)] = dset
modes = sorted(modes)
radii = sorted(radii)
#Get Psi4
def Get_Psi4(modes, radii):
for (l,m) in modes:
#Get Tortoise Coordinate
strain = []
phase = []
amp = []
for i in range(len(radii)):
#------------------------------------------------
# Read in HDF5 data
#------------------------------------------------
psi4dsetname = dsets[(radius, (l,m))]
mp_psi4 = loadHDF5Series(simdirs+"mp_psi4.h5", psi4dsetname)
mp_psi4_vars.append(mp_psi4)
#------------------------------------------------
# Coordinate conversion to Torus
#------------------------------------------------
tortoise.append(-RadialToTortoise(radius, ADMMass))
#-----------------------------------------
# Prepare for conversion to strain
#-----------------------------------------
#Get modified Psi4 (Multiply real and imaginary psi4 columns by radii and add the tortoise coordinate to the time colum)
mp_psi4_vars[i][:, 0] += tortoise[i]
mp_psi4_vars[i][:, 1] *= radii[i]
mp_psi4_vars[i][:, 2] *= radii[i]
#Check for psi4 amplitude going to zero
cur_psi4_amp = np.sqrt(mp_psi4_vars[i][0, 1]**2 + mp_psi4_vars[i][0, 2]**2)
min_psi4_amp = cur_psi4_amp
# TODO: use array notatino for this since it finds the minimum amplitude
for j in range(0, len(mp_psi4_vars[i][:, 0])):
cur_psi4_amp = np.sqrt(mp_psi4_vars[i][j, 1]**2 + mp_psi4_vars[i][j, 2]**2)
if(cur_psi4_amp < min_psi4_amp):
min_psi4_amp = cur_psi4_amp
if(min_psi4_amp < np.finfo(float).eps and l >= 2):
print("The psi4 amplitude is near zero. The phase is ill-defined.")
#Fixed-frequency integration twice to get strain
#-----------------------------------------------------------------
# Strain Conversion
#-----------------------------------------------------------------
hTable = psi4ToStrain(mp_psi4_vars[i], f0)
time = hTable[:, 0]
h = hTable[:, 1]
hplus = h.real
hcross = h.imag
newhTable = np.column_stack((time, hplus, hcross))
warnings.filterwarnings('ignore')
finalhTable = newhTable.astype(float)
np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_strain_at_"+str(radii[i])+"_l"+str(l)+"_m"+str(m)+".dat", finalhTable)
strain.append(finalhTable)
#-------------------------------------------------------------------
# Analysis of Strain
#-------------------------------------------------------------------
#Get phase and amplitude of strain
h_phase = np.unwrap(np.angle(h))
angleTable = np.column_stack((time, h_phase))
angleTable = angleTable.astype(float)
phase.append(angleTable)
h_amp = np.absolute(h)
ampTable = np.column_stack((time, h_amp))
ampTable = ampTable.astype(float)
amp.append(ampTable)
#----------------------------------------------------------------------
# Extrapolation
#----------------------------------------------------------------------
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
#Interpolate phase and amplitude
t = phase[0][:, 0]
last_t = phase[radiiUsedForExtrapolation - 1][-1, 0]
last_index = 0;
# TODO: use array notation for this (this is a boolean
# plus a first_of or so)
for i in range(0, len(phase[0][:, 0])):
if(t[i] > last_t):
last_index = i
break
last_index = last_index-1
t = phase[0][0:last_index, 0]
dts = t[1:] - t[:-1]
dt = float(np.amin(dts))
t = np.arange(phase[0][0, 0], phase[0][last_index, 0], dt)
interpolation_order = 9
for i in range(0, radiiUsedForExtrapolation):
interp_function = scipy.interpolate.interp1d(phase[i][:, 0], phase[i][:, 1], kind=interpolation_order)
resampled_phase_vals = interp_function(t)
# try and keep all initial phases within 2pi of each other
if(i > 0):
phase_shift = round((resampled_phase_vals[0] - phase[0][0,1])/(2.*math.pi))*2.*math.pi
resampled_phase_vals -= phase_shift
phase[i] = np.column_stack((t, resampled_phase_vals))
interp_function = scipy.interpolate.interp1d(amp[i][:, 0], amp[i][:, 1], kind=interpolation_order)
resampled_amp_vals = interp_function(t)
amp[i] = np.column_stack((t, resampled_amp_vals))
#Extrapolate
phase_extrapolation_order = 1
amp_extrapolation_order = 2
radii = np.asarray(radii, dtype=float)
radii = radii[0:radiiUsedForExtrapolation]
# TODO: replace by np.ones (which is all it does anyway)
A_phase = np.power(radii, 0)
A_amp = np.power(radii, 0)
for i in range(1, phase_extrapolation_order+1):
A_phase = np.column_stack((A_phase, np.power(radii, -1*i)))
for i in range(1, amp_extrapolation_order+1):
A_amp = np.column_stack((A_amp, np.power(radii, -1*i)))
radially_extrapolated_phase = np.empty(0)
radially_extrapolated_amp = np.empty(0)
for i in range(0, len(t)):
b_phase = np.empty(0)
for j in range(0, radiiUsedForExtrapolation):
b_phase = np.append(b_phase, phase[j][i, 1])
x_phase = np.linalg.lstsq(A_phase, b_phase)[0]
radially_extrapolated_phase = np.append(radially_extrapolated_phase, x_phase[0])
b_amp = np.empty(0)
for j in range(0, radiiUsedForExtrapolation):
b_amp = np.append(b_amp, amp[j][i, 1])
x_amp = np.linalg.lstsq(A_amp, b_amp)[0]
radially_extrapolated_amp = np.append(radially_extrapolated_amp, x_amp[0])
radially_extrapolated_h_plus = np.empty(0)
radially_extrapolated_h_cross = np.empty(0)
for i in range(0, len(radially_extrapolated_amp)):
radially_extrapolated_h_plus = np.append(radially_extrapolated_h_plus, radially_extrapolated_amp[i] * math.cos(radially_extrapolated_phase[i]))
radially_extrapolated_h_cross = np.append(radially_extrapolated_h_cross, radially_extrapolated_amp[i] * math.sin(radially_extrapolated_phase[i]))
np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l"+str(l)+"_m"+str(m)+".dat", np.column_stack((t, radially_extrapolated_h_plus, radially_extrapolated_h_cross)))
np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_amplitude_l"+str(l)+"_m"+str(m)+".dat", np.column_stack((t, radially_extrapolated_amp)))
np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_phase_l"+str(l)+"_m"+str(m)+".dat", np.column_stack((t, radially_extrapolated_phase[:])))
get_energy(sim)
get_angular_momentum(sim)