Skip to content
Snippets Groups Projects
power.py 25.9 KiB
Newer Older
Daniel Johnson's avatar
Daniel Johnson committed
#!/usr/bin/env python
Daniel Johnson's avatar
Daniel Johnson committed

Roland Haas's avatar
Roland Haas committed
# Copyright (c) 2017 The Board of Trustees of the University of Illinois
# All rights reserved.
#
# Developed by: Daniel Johnson, E. A. Huerta, Roland Haas
#               NCSA Gravity Group
#               National Center for Supercomputing Applications
#               University of Illinois at Urbana-Champaign
#               http://gravity.ncsa.illinois.edu/
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to
# deal with the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
# sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimers.
#
# Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimers in the documentation
# and/or other materials provided with the distribution.
#
# Neither the names of the National Center for Supercomputing Applications,
# University of Illinois at Urbana-Champaign, nor the names of its
# contributors may be used to endorse or promote products derived from this
# Software without specific prior written permission.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# WITH THE SOFTWARE.

Daniel Johnson's avatar
Daniel Johnson committed
# Based off of SimulationTools Mathematica Package
# http://www.simulationtools.org/

import numpy as np
import glob
import os
import h5py
Daniel Johnson's avatar
Daniel Johnson committed
import string
import math
import sys
import warnings
import scipy.optimize
import scipy.interpolate
import scipy.integrate
Daniel Johnson's avatar
Daniel Johnson committed

#-----Function Definitions-----#

#Function used in getting psi4 from simulation
def joinDsets(dsets):
    """joints multiple datasets which each have a
    time like first column, eg iteration number of
    time. Removes overlapping segments, keeping the
    last segment.

    dsets = iterable of 2d array like objects with data"""
    # joins multiple datasets of which the first column is assumed to be "time"
    if(not dsets):
        return None
    length = 0
    for d in dsets:
        length += len(d)
    newshape = list(dsets[0].shape)
    newshape[0] = length
    dset = np.empty(shape=newshape, dtype=dsets[0].dtype)
    usedlength = 0
    for d in dsets:
        insertpointidx = np.where(dset[0:usedlength,0] >= d[0,0])
        if(insertpointidx[0].size):
            insertpoint = insertpointidx[0][0]
        else:
            insertpoint = usedlength
        newlength = insertpoint+len(d)
        dset[insertpoint:newlength] = d
        usedlength = newlength
    return dset[0:usedlength]
Daniel Johnson's avatar
Daniel Johnson committed

#Function used in getting psi4 from simulation
def loadHDF5Series(nameglob, series):
    """load HDF5 timeseries data and concatenate the content of multiple files
Daniel Johnson's avatar
Daniel Johnson committed

    nameglob = a shell glob that matches all files to be loaded,
    files are sorted alphabetically
    series = HDF5 dataset name of dataset to load from files"""
    dsets = list()
    for fn in sorted(glob.glob(nameglob)):
        fh = h5py.File(fn, "r")
        dsets.append(fh[series])
    return joinDsets(dsets)
Daniel Johnson's avatar
Daniel Johnson committed

#Convert radial to tortoise coordinates
def RadialToTortoise(r, M):
    """
    Convert the radial coordinate to the tortoise coordinate
Daniel Johnson's avatar
Daniel Johnson committed

    r = radial coordinate
    M = ADMMass used to convert coordinate
    return = tortoise coordinate value
    """
    return r + 2. * M * math.log( r / (2. * M) - 1.)
Daniel Johnson's avatar
Daniel Johnson committed

#Convert modified psi4 to strain
def psi4ToStrain(mp_psi4, f0):
    """
    Convert the input mp_psi4 data to the strain of the gravitational wave
    
    mp_psi4 = Weyl scalar result from simulation
    f0 = cutoff frequency
    return = strain (h) of the gravitational wave
    """
    #TODO: Check for uniform spacing in time
    t0 = mp_psi4[:, 0]
    list_len = len(t0)
    complexPsi = np.zeros(list_len, dtype=np.complex_)
    complexPsi = mp_psi4[:, 1]+1.j*mp_psi4[:, 2]

    freq, psif = myFourierTransform(t0, complexPsi)
    dhf = ffi(freq, psif, f0)
    hf = ffi(freq, dhf, f0)

    time, h = myFourierTransformInverse(freq, hf, t0[0])
    hTable = np.column_stack((time, h))
    return hTable
Daniel Johnson's avatar
Daniel Johnson committed

#Fixed frequency integration
# See https://arxiv.org/abs/1508.07250 for method
def ffi(freq, data, f0):
    """
    Integrates the data according to the input frequency and cutoff frequency

    freq = fourier transform frequency
    data = input on which ffi is performed
    f0 = cutoff frequency
    """
    f1 = f0/(2*math.pi)
    fs = freq
    gs = data
    mask1 = (np.sign((fs/f1) - 1) + 1)/2.
    mask2 = (np.sign((-fs/f1) - 1) + 1)/2.
    mask = 1 - (1 - mask1) * (1 - mask2)
    fs2 = mask * fs + (1-mask) * f1 * np.sign(fs - np.finfo(float).eps)
    new_gs = gs/(2*math.pi*1.j*fs2)
    return new_gs
Daniel Johnson's avatar
Daniel Johnson committed

#Fourier Transform
def myFourierTransform(t0, complexPsi):
    """
    Transforms the complexPsi data to frequency space

    t0 = time data points
    complexPsi = data points of Psi to be transformed
    """
    psif = np.fft.fft(complexPsi, norm="ortho")
    l = len(complexPsi)
    n = int(math.floor(l/2.))
    newpsif = psif[l-n:]
    newpsif = np.append(newpsif, psif[:l-n])
    T = np.amin(np.diff(t0))*l
    freq = range(-n, l-n)/T
    return freq, newpsif
Daniel Johnson's avatar
Daniel Johnson committed

#Inverse Fourier Transform
def myFourierTransformInverse(freq, hf, t0):
    l = len(hf)
    n = int(math.floor(l/2.))
    newhf = hf[n:]
    newhf = np.append(newhf, hf[:n])
    amp = np.fft.ifft(newhf, norm="ortho")
    df = np.amin(np.diff(freq))
    time = t0 + range(0, l)/(df*l)
    return time, amp
Daniel Johnson's avatar
Daniel Johnson committed

def angular_momentum(x, q, m, chi1, chi2, LInitNR):
    eta = q/(1.+q)**2
    m1 = (1.+math.sqrt(1.-4.*eta))/2.
    m2 = m - m1
    S1 = m1**2. * chi1
    S2 = m2**2. * chi2
    Sl = S1+S2
    Sigmal = S2/m2 - S1/m1
    DeltaM = m1 - m2
    mu = eta
    nu = eta
    GammaE = 0.5772156649;
    e4 = -(123671./5760.)+(9037.* math.pi**2.)/1536.+(896.*GammaE)/15.+(-(498449./3456.)+(3157.*math.pi**2.)/576.)*nu+(301. * nu**2.)/1728.+(77.*nu**3.)/31104.+(1792. *math.log(2.))/15.
    e5 = -55.13
    j4 = -(5./7.)*e4+64./35.
    j5 = -(2./3.)*e5-4988./945.-656./135. * eta;
    a1 = -2.18522;
    a2 = 1.05185;
    a3 = -2.43395;
    a4 = 0.400665;
    a5 = -5.9991;
    CapitalDelta = (1.-4.*eta)**0.5

    l = (eta/x**(1./2.)*(
        1. +
        x*(3./2. + 1./6.*eta) + 
Daniel Johnson's avatar
Daniel Johnson committed
        x**2. *(27./8. - 19./8.*eta + 1./24.*eta**2.) + 
        x**3. *(135./16. + (-6889./144. + 41./24. * math.pi**2.)*eta + 31./24.*eta**2. + 7./1296.*eta**3.) + 
        x**4. *((2835./128.) + eta*j4 - (64.*eta*math.log(x)/3.))+ 
        x**5. *((15309./256.) + eta*j5 + ((9976./105.) + (1312.*eta/15.))*eta*math.log(x))+
        x**(3./2.)*(-(35./6.)*Sl - 5./2.*DeltaM* Sigmal) + 
        x**(5./2.)*((-(77./8.) + 427./72.*eta)*Sl + DeltaM* (-(21./8.) + 35./12.*eta)*Sigmal) + 
        x**(7./2.)*((-(405./16.) + 1101./16.*eta - 29./16.*eta**2.)*Sl + DeltaM*(-(81./16.) + 117./4.*eta - 15./16.*eta**2.)*Sigmal) + 
        (1./2. + (m1 - m2)/2. - eta)* chi1**2. * x**2. +
        (1./2. + (m2 - m1)/2. - eta)* chi2**2. * x**2. + 
        2.*eta*chi1*chi2*x**2. +
        ((13.*chi1**2.)/9. +
        (13.*CapitalDelta*chi1**2.)/9. -
        (55.*nu*chi1**2.)/9. - 
        29./9.*CapitalDelta*nu*chi1**2. + 
        (14.*nu**2. *chi1**2.)/9. +
        (7.*nu*chi1*chi2)/3. +
        17./18.* nu**2. * chi1 * chi2 + 
        (13.* chi2**2.)/9. -
        (13.*CapitalDelta*chi2**2.)/9. -
        (55.*nu*chi2**2.)/9. +
        29./9.*CapitalDelta*nu*chi2**2. +
        (14.*nu**2. * chi2**2.)/9.)
        * x**3.))
    return l - LInitNR
Daniel Johnson's avatar
Daniel Johnson committed

#Get cutoff frequency
def getCutoffFrequency(sim_name):
    """
    Determine cutoff frequency of simulation

    sim_name = string of simulation
    return = cutoff frequency
    """
    filename = main_dir+"/output-0000/%s.par" % (sim_name)
    with open(filename) as file:
        contents = file.readlines()
        for line in contents:
            line_elems = line.split(" ")
            if(line_elems[0] == "TwoPunctures::par_b"):
                par_b = float(line_elems[-1])
            if(line_elems[0] == "TwoPunctures::center_offset[0]"):
                center_offset = float(line_elems[-1])
            if(line_elems[0] == "TwoPunctures::par_P_plus[1]"):
                pyp = float(line_elems[-1])
            if(line_elems[0] == "TwoPunctures::par_P_minus[1]"):
                pym = float(line_elems[-1])
            if(line_elems[0] == "TwoPunctures::target_M_plus"):
                m1 = float(line_elems[-1])
            if(line_elems[0] == "TwoPunctures::target_M_minus"):
                m2 = float(line_elems[-1])
            if(line_elems[0] == "TwoPunctures::par_S_plus[2]"):
                S1 = float(line_elems[-1])
            if(line_elems[0] == "TwoPunctures::par_S_minus[2]"):
                S2 = float(line_elems[-1])

    xp = par_b + center_offset
    xm = -1*par_b + center_offset
    LInitNR = xp*pyp + xm*pym
    M = m1+m2
    q = m1/m2
    chi1 = S1/m1**2
    chi2 = S2/m2**2
    # .014 is the initial guess for cutoff frequency
    omOrbPN = scipy.optimize.fsolve(angular_momentum, .014, (q, M, chi1, chi2, LInitNR))[0]
    omOrbPN = omOrbPN**(3./2.)
    omGWPN = 2. * omOrbPN
    omCutoff = 0.75 * omGWPN
    return omCutoff
Daniel Johnson's avatar
Daniel Johnson committed

    """
    Save the energy radiated energy
    sim = string of simulation
    """
    python_strain = np.loadtxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l2_m2.dat")
    val = np.zeros(len(python_strain))
    val = val.astype(np.complex_)
    cur_max_time = python_strain[0][0]
    cur_max_amp = abs(pow(python_strain[0][1], 2))
    # TODO: rewrite as array operations (use numpy.argmax)
    for i in python_strain[:]:
        cur_time = i[0]
        cur_amp = abs(pow(i[1], 2))
        if(cur_amp>cur_max_amp):
            cur_max_amp = cur_amp
            cur_max_time = cur_time

    max_idx = 0
    for i in range(0, len(python_strain[:])):
        if(python_strain[i][1] > python_strain[max_idx][1]):
            max_idx = i

    paths = glob.glob("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l[2-4]_m*.dat")
    for path in paths:
        python_strain = np.loadtxt(path)

        t = python_strain[:, 0]
        t = t.astype(np.complex_)
        h = python_strain[:, 1] + 1j * python_strain[:, 2]
        dh = np.zeros(len(t), dtype=np.complex_) 
        for i in range(0, len(t)-1):
            dh[i] = ((h[i+1] - h[i])/(t[i+1] - t[i]))
        dh[len(t)-1] = dh[len(t)-2]

        dh_conj = np.conj(dh)
        prod = np.multiply(dh, dh_conj)
        local_val = np.zeros(len(t))
        local_val = local_val.astype(np.complex_)
                # TODO: rewrite as array notation using numpy.cumtrapz
        for i in range(0, len(t)):
            local_val[i] = np.trapz(prod[:i], x=(t[:i]))
        val += local_val
        
    val *= 1/(16 * math.pi)
    np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_energy.dat", val)

#Get angular momentum
def get_angular_momentum(python_strain):
    """
    Save the energy radiated angular momentum
    sim = string of simulation
    """
    python_strain = np.loadtxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l2_m2.dat")
    val = np.zeros(len(python_strain))
    val = val.astype(np.complex_)
    cur_max_time = python_strain[0][0]
    cur_max_amp = abs(pow(python_strain[0][1], 2))
    # TODO: rewrite as array operations (use numpy.argmax)
    for i in python_strain[:]:
        cur_time = i[0]
        cur_amp = abs(pow(i[1], 2))
        if(cur_amp>cur_max_amp):
            cur_max_amp = cur_amp
            cur_max_time = cur_time

    max_idx = 0
    for i in range(0, len(python_strain[:])):
        if(python_strain[i][1] > python_strain[max_idx][1]):
            max_idx = i

    paths = glob.glob("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l[2-4]_m*.dat")
    for path in paths:
        python_strain = np.loadtxt(path)

        t = python_strain[:, 0]
        t = t.astype(np.complex_)
        h = python_strain[:, 1] + 1j * python_strain[:, 2]
        dh = np.zeros(len(t), dtype=np.complex_) 
Roland Haas's avatar
Roland Haas committed
                # TODO: rewrite using array notation
        for i in range(0, len(t)-1):
            dh[i] = ((h[i+1] - h[i])/(t[i+1] - t[i]))
        dh[len(t)-1] = dh[len(t)-2]

        dh_conj = np.conj(dh)
        prod = np.multiply(h, dh_conj)
        local_val = np.zeros(len(t))
        local_val = local_val.astype(np.complex_)
                # TODO: rewrite as array notation using numpy.cumtrapz. Move atoi call out of inner loop.
        for i in range(0, len(t)):
            local_val[i] = np.trapz(prod[:i], x=(t[:i])) * int(((path.split("_")[-1]).split("m")[-1]).split(".")[0])
        val += local_val
        
    val *= 1/(16 * math.pi)
    np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_angular_momentum.dat", val)
Daniel Johnson's avatar
Daniel Johnson committed

#-----Main-----#

if __name__ == "__main__":
    #Initialize simulation data
    if(len(sys.argv) < 2):
            print("Pass in the number n of the n innermost detector radii to be used in the extrapolation (optional, default=all) and the simulation folders (e.g., ./power.py 6 ./simulations/J0040_N40 /path/to/my_simulation_folder).")
            sys.exit()
    elif(os.path.isdir(sys.argv[1])):
            radiiUsedForExtrapolation = 7    #use the first n radii available
            paths = sys.argv[1:]
    elif(not os.path.isdir(sys.argv[1])):
            radiiUsedForExtrapolation = int(sys.argv[1])    #use the first n radii available
            if(radiiUsedForExtrapolation < 1 or radiiUsedForExtrapolation > 7):
                    print("Invalid specified radii number")
                    sys.exit()
            paths = sys.argv[2:]

    for sim_path in paths:
            main_dir = sim_path
            sim = os.path.split(sim_path)[-1]

            simdirs = main_dir+"/output-????/%s/" % (sim)
            f0 = getCutoffFrequency(sim)

            #Get simulation total mass
            ADMMass = None
            two_punctures_files = sorted(glob.glob(main_dir+"/output-????/%s/TwoPunctures.bbh" % (sim)))
            out_files = sorted(glob.glob(main_dir+"/output-????/%s.out" % (sim)))
            par_files = sorted(glob.glob(main_dir+"/output-????/%s.par" % (sim)))
            if(two_punctures_files):
                two_punctures_file = two_punctures_files[0]
                with open(two_punctures_file) as file:
                      contents = file.readlines()
                      for line in contents:
                              line_elems = line.split(" ")
                              if(line_elems[0] == "initial-ADM-energy"):
                                      ADMMass = float(line_elems[-1])
            elif(out_files):
                  out_file = out_files[0]
                  with open(out_file) as file:
                        contents = file.readlines()
                        for line in contents:
                              m = re.match("INFO \(TwoPunctures\): The total ADM mass is (.*)", line)
                              if(m):
                                  ADMMass = float(m.group(1))
                  par_file = par_files[0]
                  print("Not yet implemented")
                  raise ValueError
            else:
                print("Cannot determine ADM mass")
                raise ValueError

            #Create data directories
            main_directory = "Extrapolated_Strain"
            sim_dir = main_directory+"/"+sim
            if not os.path.exists(main_directory):
                    os.makedirs(main_directory)
            if not os.path.exists(sim_dir):
                    os.makedirs(sim_dir)

            # TODO: fix this. It will fail if output-0000 does not contain any mp
            # output and also will open the output files multiple times
            fn = sorted(glob.glob(simdirs+"mp_psi4.h5"))[0]
            with h5py.File(fn, "r") as fh:
                    # get all radii
                    radii = set()
                    modes = set()
                    dsets = dict()
                    for dset in fh:
                            # TODO: extend Multipole to save the radii as attributes and/or
                            # use a group structure in the hdf5 file
                            m = re.match(r'l(\d*)_m(-?\d*)_r(\d*\.\d)', dset)
                            if m:
                                    radius = float(m.group(3))
                                    mode = (int(m.group(1)), int(m.group(2)))
                                    modes.add(mode)
                                    radii.add(radius)
                                    dsets[(radius, mode)] = dset
                    modes = sorted(modes)
                    radii = sorted(radii)

            #Get Psi4
            
            for (l,m) in modes:
                    #Get Tortoise Coordinate
                    mp_psi4_vars = []
                    tortoise = []    
                    strain = []
                    phase = []
                    amp = []
                    for i in range(len(radii)):
                            #------------------------------------------------
                            # Read in HDF5 data
                            #------------------------------------------------                 
                            radius = radii[i]
                            psi4dsetname = dsets[(radius, (l,m))]
                            mp_psi4 = loadHDF5Series(simdirs+"mp_psi4.h5", psi4dsetname)
                            mp_psi4_vars.append(mp_psi4)
                            #------------------------------------------------
                            # Coordinate conversion to Torus
                            #------------------------------------------------
                            tortoise.append(-RadialToTortoise(radius, ADMMass))
                            #-----------------------------------------
                            # Prepare for conversion to strain
                            #-----------------------------------------
                            #Get modified Psi4 (Multiply real and imaginary psi4 columns by radii and add the tortoise coordinate to the time colum)
                            mp_psi4_vars[i][:, 0] += tortoise[i]
                            mp_psi4_vars[i][:, 1] *= radii[i]
                            mp_psi4_vars[i][:, 2] *= radii[i]

                            #Check for psi4 amplitude going to zero
                            cur_psi4_amp = np.sqrt(mp_psi4_vars[i][0, 1]**2 + mp_psi4_vars[i][0, 2]**2)
                            min_psi4_amp = cur_psi4_amp
                            # TODO: use array notatino for this since it finds the minimum amplitude
                            for j in range(0, len(mp_psi4_vars[i][:, 0])):
                                    cur_psi4_amp = np.sqrt(mp_psi4_vars[i][j, 1]**2 + mp_psi4_vars[i][j, 2]**2)
                                    if(cur_psi4_amp < min_psi4_amp):
                                            min_psi4_amp = cur_psi4_amp
                            if(min_psi4_amp < np.finfo(float).eps and l >= 2):
                                    print("The psi4 amplitude is near zero. The phase is ill-defined.")

                            #Fixed-frequency integration twice to get strain
                            #-----------------------------------------------------------------
                            # Strain Conversion
                            #-----------------------------------------------------------------
                            hTable = psi4ToStrain(mp_psi4_vars[i], f0)
                            time = hTable[:, 0]
                            h = hTable[:, 1]
                            hplus = h.real
                            hcross = h.imag
                            newhTable = np.column_stack((time, hplus, hcross))
                            warnings.filterwarnings('ignore')
                            finalhTable = newhTable.astype(float)
                            np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_strain_at_"+str(radii[i])+"_l"+str(l)+"_m"+str(m)+".dat", finalhTable)
                            strain.append(finalhTable)
                            #-------------------------------------------------------------------
                            # Analysis of Strain
                            #-------------------------------------------------------------------
                            #Get phase and amplitude of strain
                            h_phase = np.unwrap(np.angle(h))
                            angleTable = np.column_stack((time, h_phase))
                            angleTable = angleTable.astype(float)
                            phase.append(angleTable)
                            h_amp = np.absolute(h)
                            ampTable = np.column_stack((time, h_amp))
                            ampTable = ampTable.astype(float)
                            amp.append(ampTable)
                    
                    #----------------------------------------------------------------------
                    # Extrapolation
                    #----------------------------------------------------------------------
                    #Interpolate phase and amplitude
                    t = phase[0][:, 0]
                    last_t = phase[radiiUsedForExtrapolation - 1][-1, 0]
                    last_index = 0;
                    # TODO: use array notation for this (this is a boolean
                    # plus a first_of or so)
                    for i in range(0, len(phase[0][:, 0])):
                            if(t[i] > last_t):
                                    last_index = i
                                    break
                    last_index = last_index-1
                    t = phase[0][0:last_index, 0]
                    dts = t[1:] - t[:-1]
                    dt = float(np.amin(dts))
                    t = np.arange(phase[0][0, 0], phase[0][last_index, 0], dt)
                    interpolation_order = 9
                    for i in range(0, radiiUsedForExtrapolation):
                            interp_function = scipy.interpolate.interp1d(phase[i][:, 0], phase[i][:, 1], kind=interpolation_order)
                            resampled_phase_vals = interp_function(t)
                            # try and keep all initial phases within 2pi of each other
                            if(i > 0):
                                phase_shift = round((resampled_phase_vals[0] - phase[0][0,1])/(2.*math.pi))*2.*math.pi
                                resampled_phase_vals -= phase_shift
                            phase[i] = np.column_stack((t, resampled_phase_vals))
                            interp_function = scipy.interpolate.interp1d(amp[i][:, 0], amp[i][:, 1], kind=interpolation_order)
                            resampled_amp_vals = interp_function(t)
                            amp[i] = np.column_stack((t, resampled_amp_vals))

                    #Extrapolate
                    phase_extrapolation_order = 1
                    amp_extrapolation_order = 2
                    radii = np.asarray(radii, dtype=float)
                    radii = radii[0:radiiUsedForExtrapolation]
                    # TODO: replace by np.ones (which is all it does anyway)
                    A_phase = np.power(radii, 0)
                    A_amp = np.power(radii, 0)
                    for i in range(1, phase_extrapolation_order+1):
                            A_phase = np.column_stack((A_phase, np.power(radii, -1*i)))

                    for i in range(1, amp_extrapolation_order+1):
                            A_amp = np.column_stack((A_amp, np.power(radii, -1*i)))

                    radially_extrapolated_phase = np.empty(0)
                    radially_extrapolated_amp = np.empty(0)
                    for i in range(0, len(t)):
                            b_phase = np.empty(0)
                            for j in range(0, radiiUsedForExtrapolation):
                                    b_phase = np.append(b_phase, phase[j][i, 1])
                            x_phase = np.linalg.lstsq(A_phase, b_phase)[0]
                            radially_extrapolated_phase = np.append(radially_extrapolated_phase, x_phase[0])

                            b_amp = np.empty(0)
                            for j in range(0, radiiUsedForExtrapolation):
                                    b_amp = np.append(b_amp, amp[j][i, 1])
                            x_amp = np.linalg.lstsq(A_amp, b_amp)[0]
                            radially_extrapolated_amp = np.append(radially_extrapolated_amp, x_amp[0])

                    radially_extrapolated_h_plus = np.empty(0)
                    radially_extrapolated_h_cross = np.empty(0)
                    for i in range(0, len(radially_extrapolated_amp)):
                            radially_extrapolated_h_plus = np.append(radially_extrapolated_h_plus, radially_extrapolated_amp[i] * math.cos(radially_extrapolated_phase[i]))
                            radially_extrapolated_h_cross = np.append(radially_extrapolated_h_cross, radially_extrapolated_amp[i] * math.sin(radially_extrapolated_phase[i]))

                    np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l"+str(l)+"_m"+str(m)+".dat", np.column_stack((t, radially_extrapolated_h_plus, radially_extrapolated_h_cross)))
                    np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_amplitude_l"+str(l)+"_m"+str(m)+".dat", np.column_stack((t, radially_extrapolated_amp)))
                    np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_phase_l"+str(l)+"_m"+str(m)+".dat", np.column_stack((t, radially_extrapolated_phase[:])))

            get_energy(sim)
            get_angular_momentum(sim)