Newer
Older
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Copyright (c) 2017 The Board of Trustees of the University of Illinois
# All rights reserved.
#
# Developed by: Daniel Johnson, E. A. Huerta, Roland Haas
# NCSA Gravity Group
# National Center for Supercomputing Applications
# University of Illinois at Urbana-Champaign
# http://gravity.ncsa.illinois.edu/
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to
# deal with the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
# sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimers.
#
# Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimers in the documentation
# and/or other materials provided with the distribution.
#
# Neither the names of the National Center for Supercomputing Applications,
# University of Illinois at Urbana-Champaign, nor the names of its
# contributors may be used to endorse or promote products derived from this
# Software without specific prior written permission.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# WITH THE SOFTWARE.
# Based off of SimulationTools Mathematica Package
# http://www.simulationtools.org/
import numpy as np
import glob
import os
import h5py
import math
import sys
import warnings
import scipy.optimize
import scipy.interpolate
#-----Function Definitions-----#
def joinDsets(dsets):
"""joints multiple datasets which each have a
time like first column, eg iteration number of
time. Removes overlapping segments, keeping the
last segment.
dsets = iterable of 2d array like objects with data"""
# joins multiple datasets of which the first column is assumed to be "time"
if(not dsets):
return None
length = 0
for d in dsets:
length += len(d)
newshape = list(dsets[0].shape)
newshape[0] = length
dset = np.empty(shape=newshape, dtype=dsets[0].dtype)
usedlength = 0
for d in dsets:
insertpointidx = np.where(dset[0:usedlength,0] >= d[0,0])
if(insertpointidx[0].size):
insertpoint = insertpointidx[0][0]
else:
insertpoint = usedlength
newlength = insertpoint+len(d)
dset[insertpoint:newlength] = d
usedlength = newlength
return dset[0:usedlength]
"""load HDF5 timeseries data and concatenate the content of multiple files
nameglob = a shell glob that matches all files to be loaded,
files are sorted alphabetically
series = HDF5 dataset name of dataset to load from files"""
dsets = list()
for fn in sorted(glob.glob(nameglob)):
fh = h5py.File(fn, "r")
dsets.append(fh[series])
return joinDsets(dsets)
#Convert radial to tortoise coordinates
def RadialToTortoise(r, M):
"""
Convert the radial coordinate to the tortoise coordinate
r = radial coordinate
M = ADMMass used to convert coordinate
return = tortoise coordinate value
"""
return r + 2. * M * math.log( r / (2. * M) - 1.)
# use fixed frequency integration to integrate psi4 once
def FFIIntegrate(mp_psi4, f0):
"""
Compute the integral of mmp_psi4 data using fixed frequency integration
mp_psi4 = Weyl scalar result from simulation
f0 = cutoff frequency
return = news of the gravitational wave
"""
#TODO: Check for uniform spacing in time
t0 = mp_psi4[:, 0]
list_len = len(t0)
complexPsi = mp_psi4[:, 1]
freq, psif = myFourierTransform(t0, complexPsi)
hf = ffi(freq, psif, f0)
time, h = myFourierTransformInverse(freq, hf, t0[0])
hTable = np.column_stack((time, h))
return hTable
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#Convert modified psi4 to strain
def psi4ToStrain(mp_psi4, f0):
"""
Convert the input mp_psi4 data to the strain of the gravitational wave
mp_psi4 = Weyl scalar result from simulation
f0 = cutoff frequency
return = strain (h) of the gravitational wave
"""
#TODO: Check for uniform spacing in time
t0 = mp_psi4[:, 0]
list_len = len(t0)
complexPsi = mp_psi4[:, 1]+1.j*mp_psi4[:, 2]
freq, psif = myFourierTransform(t0, complexPsi)
dhf = ffi(freq, psif, f0)
hf = ffi(freq, dhf, f0)
time, h = myFourierTransformInverse(freq, hf, t0[0])
hTable = np.column_stack((time, h))
return hTable
#Fixed frequency integration
# See https://arxiv.org/abs/1508.07250 for method
def ffi(freq, data, f0):
"""
Integrates the data according to the input frequency and cutoff frequency
freq = fourier transform frequency
data = input on which ffi is performed
f0 = cutoff frequency
"""
f1 = f0/(2*math.pi)
fs = freq
gs = data
mask1 = (np.sign((fs/f1) - 1) + 1)/2.
mask2 = (np.sign((-fs/f1) - 1) + 1)/2.
mask = 1 - (1 - mask1) * (1 - mask2)
fs2 = mask * fs + (1-mask) * f1 * np.sign(fs - np.finfo(float).eps)
new_gs = gs/(2*math.pi*1.j*fs2)
return new_gs
#Fourier Transform
def myFourierTransform(t0, complexPsi):
"""
Transforms the complexPsi data to frequency space
t0 = time data points
complexPsi = data points of Psi to be transformed
"""
psif = np.fft.fft(complexPsi, norm="ortho")
l = len(complexPsi)
n = int(math.floor(l/2.))
newpsif = psif[l-n:]
newpsif = np.append(newpsif, psif[:l-n])
T = np.amin(np.diff(t0))*l
freq = range(-n, l-n)/T
return freq, newpsif
#Inverse Fourier Transform
def myFourierTransformInverse(freq, hf, t0):
l = len(hf)
n = int(math.floor(l/2.))
newhf = hf[n:]
newhf = np.append(newhf, hf[:n])
amp = np.fft.ifft(newhf, norm="ortho")
df = np.amin(np.diff(freq))
time = t0 + range(0, l)/(df*l)
return time, amp
def angular_momentum(x, q, m, chi1, chi2, LInitNR):
eta = q/(1.+q)**2
m1 = (1.+math.sqrt(1.-4.*eta))/2.
m2 = m - m1
S1 = m1**2. * chi1
S2 = m2**2. * chi2
Sl = S1+S2
Sigmal = S2/m2 - S1/m1
DeltaM = m1 - m2
mu = eta
nu = eta
GammaE = 0.5772156649;
e4 = -(123671./5760.)+(9037.* math.pi**2.)/1536.+(896.*GammaE)/15.+(-(498449./3456.)+(3157.*math.pi**2.)/576.)*nu+(301. * nu**2.)/1728.+(77.*nu**3.)/31104.+(1792. *math.log(2.))/15.
e5 = -55.13
j4 = -(5./7.)*e4+64./35.
j5 = -(2./3.)*e5-4988./945.-656./135. * eta;
CapitalDelta = (1.-4.*eta)**0.5
# RH: expression was originally provided by EAH
# TODO: get referecen for this from EAH
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
l = (eta/x**(1./2.)*(
1. +
x*(3./2. + 1./6.*eta) +
x**2. *(27./8. - 19./8.*eta + 1./24.*eta**2.) +
x**3. *(135./16. + (-6889./144. + 41./24. * math.pi**2.)*eta + 31./24.*eta**2. + 7./1296.*eta**3.) +
x**4. *((2835./128.) + eta*j4 - (64.*eta*math.log(x)/3.))+
x**5. *((15309./256.) + eta*j5 + ((9976./105.) + (1312.*eta/15.))*eta*math.log(x))+
x**(3./2.)*(-(35./6.)*Sl - 5./2.*DeltaM* Sigmal) +
x**(5./2.)*((-(77./8.) + 427./72.*eta)*Sl + DeltaM* (-(21./8.) + 35./12.*eta)*Sigmal) +
x**(7./2.)*((-(405./16.) + 1101./16.*eta - 29./16.*eta**2.)*Sl + DeltaM*(-(81./16.) + 117./4.*eta - 15./16.*eta**2.)*Sigmal) +
(1./2. + (m1 - m2)/2. - eta)* chi1**2. * x**2. +
(1./2. + (m2 - m1)/2. - eta)* chi2**2. * x**2. +
2.*eta*chi1*chi2*x**2. +
((13.*chi1**2.)/9. +
(13.*CapitalDelta*chi1**2.)/9. -
(55.*nu*chi1**2.)/9. -
29./9.*CapitalDelta*nu*chi1**2. +
(14.*nu**2. *chi1**2.)/9. +
(7.*nu*chi1*chi2)/3. +
17./18.* nu**2. * chi1 * chi2 +
(13.* chi2**2.)/9. -
(13.*CapitalDelta*chi2**2.)/9. -
(55.*nu*chi2**2.)/9. +
29./9.*CapitalDelta*nu*chi2**2. +
(14.*nu**2. * chi2**2.)/9.)
* x**3.))
return l - LInitNR
def getFinalSpinFromQLM(sim_path):
mass_path = sorted(glob.glob(os.path.join(sim_path, "output-????", "*", "quasilocalmeasures-qlm_scalars..asc")))
A_val = np.loadtxt(mass_path[-1]) ## For mass calculation
M_final = A_val[:,58][-1]
Sz_final = A_val[:,37][-1]
a_final = Sz_final / M_final
return a_final, M_final
def getADMMassFromTwoPunctureBBH(meta_filename):
"""
Determine cutoff frequency of simulation
meta_filename = path to TwoPunctures.bbh
return = initial ADM mass of system
"""
config = configparser.ConfigParser()
config.read(meta_filename)
ADMmass = float(config['metadata']['initial-ADM-energy'])
return ADMmass
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
def getCutoffFrequencyFromTwoPuncturesBBH(meta_filename):
"""
Determine cutoff frequency of simulation
meta_filename = path to TwoPunctures.bbh
return = cutoff frequency
"""
config = configparser.ConfigParser()
config.read(meta_filename)
position1x = float(config['metadata']['initial-bh-position1x'])
position1y = float(config['metadata']['initial-bh-position1y'])
position1z = float(config['metadata']['initial-bh-position1z'])
position2x = float(config['metadata']['initial-bh-position2x'])
position2y = float(config['metadata']['initial-bh-position2y'])
position2z = float(config['metadata']['initial-bh-position2z'])
momentum1x = float(config['metadata']['initial-bh-momentum1x'])
momentum1y = float(config['metadata']['initial-bh-momentum1y'])
momentum1z = float(config['metadata']['initial-bh-momentum1z'])
momentum2x = float(config['metadata']['initial-bh-momentum2x'])
momentum2y = float(config['metadata']['initial-bh-momentum2y'])
momentum2z = float(config['metadata']['initial-bh-momentum2z'])
spin1x = float(config['metadata']['initial-bh-spin1x'])
spin1y = float(config['metadata']['initial-bh-spin1y'])
spin1z = float(config['metadata']['initial-bh-spin1z'])
spin2x = float(config['metadata']['initial-bh-spin2x'])
spin2y = float(config['metadata']['initial-bh-spin2y'])
spin2z = float(config['metadata']['initial-bh-spin2z'])
mass1 = float(config['metadata']['initial-bh-puncture-adm-mass1'])
mass2 = float(config['metadata']['initial-bh-puncture-adm-mass2'])
angularmomentum1x = position1y * momentum1z - momentum1z * momentum1y
angularmomentum1y = position1z * momentum1x - momentum1x * momentum1z
angularmomentum1z = position1x * momentum1y - momentum1y * momentum1x
angularmomentum2x = position2y * momentum2z - momentum2z * momentum2y
angularmomentum2y = position2z * momentum2x - momentum2x * momentum2z
angularmomentum2z = position2x * momentum2y - momentum2y * momentum2x
angularmomentumx = angularmomentum1x + angularmomentum2x
angularmomentumy = angularmomentum1y + angularmomentum2y
angularmomentumz = angularmomentum1z + angularmomentum2z
LInitNR = math.sqrt(angularmomentumx**2 + angularmomentumy**2 + angularmomentumz**2)
S1 = math.sqrt(spin1x**2 + spin1y**2 + spin1z**2)
S2 = math.sqrt(spin2x**2 + spin2y**2 + spin2z**2)
M = mass1+mass2
q = mass1/mass2
chi1 = S1/mass1**2
chi2 = S2/mass2**2
# .014 is the initial guess for cutoff frequency
omOrbPN = scipy.optimize.fsolve(angular_momentum, .014, (q, M, chi1, chi2, LInitNR))[0]
omOrbPN = omOrbPN**(3./2.)
omGWPN = 2. * omOrbPN
omCutoff = 0.75 * omGWPN
return omCutoff
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
def getModesInFile(sim_path):
"""
Find all modes and radii in file.
sim_path = path to simulation main directory
return = radii, modes
"""
fn = sorted(glob.glob(sim_path+"/output-????/*/mp_[Pp]si4.h5"))[0]
with h5py.File(fn, "r") as fh:
radii = set()
modes = set()
for dset in fh:
# TODO: extend Multipole to save the radii as attributes and/or
# use a group structure in the hdf5 file
m = re.match(r'l(\d*)_m(-?\d*)_r(\d*\.\d)', dset)
if m:
radius = float(m.group(3))
mode = (int(m.group(1)), int(m.group(2)))
modes.add(mode)
radii.add(radius)
modes = sorted(modes)
radii = sorted(radii)
return radii, modes
Brockton Brendal
committed
# -----------------------------------------------------------------------------
# POWER Method
# -----------------------------------------------------------------------------
def POWER(sim_path, radii, modes):
main_dir = sim_path
sim = os.path.split(sim_path)[-1]
simdirs = main_dir+"/output-????/%s/" % (sim)
f0 = getCutoffFrequencyFromTwoPuncturesBBH(main_dir+"/output-0000/%s/TwoPunctures.bbh" % (sim))
#Get simulation total mass
ADMMass = getADMMassFromTwoPunctureBBH(main_dir+"/output-0000/%s/TwoPunctures.bbh" % (sim))
# get translation table from (mode, radius) to dataset name
# TODO: this ought to be handled differently
dsets = {}
fn = sorted(glob.glob(sim_path+"/output-????/*/mp_[Pp]si4.h5"))[0]
with h5py.File(fn, "r") as fh:
for dset in fh:
# TODO: extend Multipole to save the radii as attributes and/or
# use a group structure in the hdf5 file
m = re.match(r'l(\d*)_m(-?\d*)_r(\d*\.\d)', dset)
if m:
radius = float(m.group(3))
mode = (int(m.group(1)), int(m.group(2)))
dsets[(radius, mode)] = dset
#Get Psi4
extrapolated_strains = []
for (l,m) in modes: # 25 times through the loop, from (1,1) to (4,4)
mp_psi4_vars = []
strain = []
phase = []
amp = []
for i in range(len(radii)): # so 7 times through each mode at each of the 7 radii
#------------------------------------------------
# Read in HDF5 data
#------------------------------------------------
radius = radii[i]
psi4dsetname = dsets[(radius, (l,m))]
mp_psi4 = loadHDF5Series(simdirs+"mp_psi4.h5", psi4dsetname)
mp_psi4_vars.append(mp_psi4)
Brockton Brendal
committed
#-----------------------------------------
# Prepare for conversion to strain
#-----------------------------------------
# retardate time by estimated travel time to each detector,
# convert from psi4 to r*psi4 to account for initial 1/r falloff
# RH: it might be even better (though harder to define) to
# get a retardating time by looking at the time of the
# maximum (found as an optimization over an interpolating
# function, not argmax)
mp_psi4_vars[i][:, 0] -= RadialToTortoise(radius, ADMMass)
mp_psi4_vars[i][:, 1] *= radii[i]
mp_psi4_vars[i][:, 2] *= radii[i]
#Check for psi4 amplitude going to zero
# RH: this makes very little sense since the amplitude is
# expected to be zero initially and very late
psi4_amp = np.sqrt(mp_psi4_vars[i][:, 1]**2 + mp_psi4_vars[i][:, 2]**2)
min_psi4_amp = np.amin(psi4_amp)
if(min_psi4_amp < np.finfo(float).eps and l >= 2):
print("The psi4 amplitude is near zero. The phase is ill-defined.")
#Fixed-frequency integration twice to get strain
#-----------------------------------------------------------------
# Strain Conversion
#-----------------------------------------------------------------
hTable = psi4ToStrain(mp_psi4_vars[i], f0) # table of strain
time = hTable[:, 0]
h = hTable[:, 1]
hplus = h.real
hcross = h.imag
newhTable = np.column_stack((time, hplus, hcross))
warnings.filterwarnings('ignore')
finalhTable = newhTable.astype(float)
strain.append(finalhTable)
#-------------------------------------------------------------------
# Analysis of Strain
#-------------------------------------------------------------------
#Get phase and amplitude of strain
h_phase = np.unwrap(np.angle(h))
# print(len(h_phase), "h_phase length")
# print(len(time), "time length")
angleTable = np.column_stack((time, h_phase)) ### start here
angleTable = angleTable.astype(float) ### b/c t is defined based on
phase.append(angleTable) ### time here
h_amp = np.absolute(h)
ampTable = np.column_stack((time, h_amp))
ampTable = ampTable.astype(float)
amp.append(ampTable)
#print("h_amp:" , h_amp)
#----------------------------------------------------------------------
# Extrapolation
#----------------------------------------------------------------------
# get common range in times
tmin = max([phase[i][ 0,0] for i in range(len(phase))])
tmax = min([phase[i][-1,0] for i in range(len(phase))])
# smallest timestep in any series
dtmin = min([np.amin(np.diff(phase[0][:,0])) for i in range(len(phase))])
# uniform, common time
t = np.arange(tmin, tmax, dtmin)
# Interpolate phase and amplitude
interpolation_order = 9
for i in range(len(radii)):
interp_function = scipy.interpolate.interp1d(amp[i][:, 0], amp[i][:, 1], kind=interpolation_order)
resampled_amp_vals = interp_function(t)
amp[i] = np.column_stack((t, resampled_amp_vals))
interp_function = scipy.interpolate.interp1d(phase[i][:, 0], phase[i][:, 1], kind=interpolation_order)
resampled_phase_vals = interp_function(t)
# try and keep all phases at the amplitude maximum within 2pi of each other
# alignment is between neighbhours just in case there actually ever is
# >2pi difference between the innermost and the ohtermost detector
if(i > 0):
# for some modes (post 2,2) the initial junk can be the
# largest amplitude contribution, so w try to skip it
# when looking for maxima
junk_time = 50.
post_junk_idx_p = amp[i-1][:,0] > junk_time
post_junk_idx = amp[i-1][:,0] > junk_time
maxargp = np.argmax(amp[i-1][post_junk_idx_p,1])
maxarg = np.argmax(amp[i][post_junk_idx,1])
phase_shift = round((resampled_phase_vals[post_junk_idx][maxarg] - phase[i-1][post_junk_idx_p][maxargp,1])/(2.*math.pi))*2.*math.pi
resampled_phase_vals -= phase_shift
phase[i] = np.column_stack((t, resampled_phase_vals))
#Extrapolate
phase_extrapolation_order = 1
amp_extrapolation_order = 2
radii = np.asarray(radii, dtype=float)
A_phase = np.ones_like(radii)
A_amp = np.ones_like(radii)
for i in range(1, phase_extrapolation_order+1):
A_phase = np.column_stack((A_phase, np.power(radii, -1*i)))
for i in range(1, amp_extrapolation_order+1):
A_amp = np.column_stack((A_amp, np.power(radii, -1*i)))
b_phase = np.empty_like(radii, shape=(len(radii), len(t)))
b_amp = np.empty_like(radii, shape=(len(radii), len(t)))
for j in range(len(radii)):
b_phase[j] = phase[j][:, 1]
b_amp[j] = amp[j][:, 1]
x_phase = np.linalg.lstsq(A_phase, b_phase)[0]
radially_extrapolated_phase = x_phase[0]
x_amp = np.linalg.lstsq(A_amp, b_amp)[0]
radially_extrapolated_amp = x_amp[0]
radially_extrapolated_h_plus = radially_extrapolated_amp * np.cos(radially_extrapolated_phase)
radially_extrapolated_h_cross = radially_extrapolated_amp * np.sin(radially_extrapolated_phase)
extrapolated_strains.append(np.column_stack((t, radially_extrapolated_h_plus, radially_extrapolated_h_cross)))
return extrapolated_strains
Brockton Brendal
committed
# -----------------------------------------------------------------------------
# Nakano Method
# -----------------------------------------------------------------------------
def eq_29(sim_path, radii_list, modes):
main_dir = sim_path
sim = os.path.split(sim_path)[-1]
simdirs = sim_path+"/output-????/%s/" % (sim)
# get translation table from (mode, radius) to dataset name
# TODO: this ought to be handled differently
dsets = {}
fn = sorted(glob.glob(sim_path+"/output-????/*/mp_[Pp]si4.h5"))[0]
with h5py.File(fn, "r") as fh:
for dset in fh:
# TODO: extend Multipole to save the radii as attributes and/or
# use a group structure in the hdf5 file
m = re.match(r'l(\d*)_m(-?\d*)_r(\d*\.\d)', dset)
if m:
radius = float(m.group(3))
mode = (int(m.group(1)), int(m.group(2)))
dsets[(radius, mode)] = dset
a, M = getFinalSpinFromQLM(sim_path)
f0 = getCutoffFrequencyFromTwoPuncturesBBH(main_dir+"/output-0000/%s/TwoPunctures.bbh" % (sim))
extrapolated_strains = []
for (l,m) in modes:
for radius in radii_list:
ar = loadHDF5Series(simdirs+"mp_psi4.h5" , dsets[(radius, (l,m))]) # loads HDF5 Series from file mp_psi4.h5, specifically the "l%d_m%d_r100.00" ones ... let's loop this over all radii
psi = np.column_stack((ar[:,0], ar[:,1] + 1j * ar[:,2]))
# 1st column of ar, time data points
# 2nd column of ar, data points for psi
# 3rd column of ar, data points for imaginary psi
news = FFIIntegrate(psi, f0)
strain = FFIIntegrate(news, f0)
# TODO: check if expressions are applicable for l < 2 at all or
# of Nakano's derivation requires l>=2 to begin with
if l < 1 or (radius, (l+1,m)) not in dsets:
psi_a = np.zeros_like(psi) # ...fill psi_a and impsi_a arrays with zeros (mode is unphysical)
dt_psi_a = np.zeros_like(psi) # ...fill psi_a and impsi_a arrays with zeros (mode is unphysical)
B = 0.
b_1 = 0.
b_2 = 0.
else:
# TODO: throw an error when a physical mode is not present in the file?
modes_a = dsets[(radius, (l+1,m))] # "top" modes
ar_a = loadHDF5Series(simdirs+'mp_psi4.h5' , modes_a)
psi_a = np.column_stack((ar_a[:,0], ar_a[:,1] + 1j * ar_a[:,2]))
dt_psi_a = np.column_stack((psi_a[:,0], np.gradient(psi_a[:,1], psi_a[:,0])))
B = 2.j*a/(l+1.)**2*np.sqrt((l+3.)*(l-1)*(l+m+1.)*(l-m+1.)/((2.*l+1.)*(2.*l+3.)))
b_1 = 1.
b_2 = l*(l+3.)/radius
Brockton Brendal
committed
if m > l-1 or l < 2: # if m is greater than the bottom mode...
psi_b = np.zeros_like(psi) # ...fill psi_b and impsi_b arrays with zeros (mode is unphysical)
dt_psi_b = np.zeros_like(psi) # ...fill psi_b and impsi_b arrays with zeros (mode is unphysical)
C = 0.
c_1 = 0.
c_2 = 0.
modes_b = dsets[(radius, (l-1, m))] # "bottom" modes
ar_b = loadHDF5Series(simdirs+'mp_psi4.h5' , modes_b)
psi_b = np.column_stack((ar_b[:,0], ar_b[:,1] + 1j * ar_b[:,2]))
dt_psi_b = np.column_stack((psi_b[:,0], np.gradient(psi_b[:,1], psi_b[:,0])))
C = 2.j*a/l**2*np.sqrt((l+2.)*(l-2.)*(l+m)*(l-m)/((2.*l-1.)*(2.*l+1.)))
c_1 = 1.
c_2 = (l-2.)*(l+1.)/radius
A = 1.-(2.*M/radius)
a_1 = radius
if l < 1:
a_2 = 0.
a_3 = 0.
else:
a_2 = (l-1.)*(l+2.)/(2.*radius)
# Note: third term is negative for l==1
a_3 = (l-1.)*(l+2.)*(l**2 + l - 4.)/(8*radius*radius)
Brockton Brendal
committed
extrapolated_psi_data = A*(a_1*psi[:,1] - a_2*radius*news[:,1] + a_3*radius*strain[:,1]) + B*(b_1*radius*dt_psi_a[:,1] - b_2*radius*psi_a[:,1]) - C*(c_1*radius*dt_psi_b[:,1] - c_2*radius*psi_b[:,1])
extrapolated_psi = np.column_stack((psi[:,0], extrapolated_psi_data.real, extrapolated_psi_data.imag))
extrapolated_strain = psi4ToStrain(extrapolated_psi, f0)
extrapolated_strains.append(np.column_stack(
(extrapolated_strain[:,0].real, extrapolated_strain[:,1].real,
extrapolated_strain[:,1].imag)))
return extrapolated_strains
# -----------------------------------------------------------------------------
### argparse machinery:
def dir_path(string):
if os.path.isdir(string):
return string
else:
print("Not a directory: %s" %(string))
# raise NotADirectoryError(string)
parser = argparse.ArgumentParser(description='Choose extrapolation method')
parser.add_argument("method" , choices=["POWER" , "Nakano"] , help="Extrapolation method to be used here")
parser.add_argument('-r', "--radii" , type=int , help="For POWER method; Number of radii to be used", default=7)
parser.add_argument('-m' , "--modes" , type=str , help="For Nakano method; modes to use, l,m. Leave blank to extrapolate over all available modes")
parser.add_argument("path" , type=dir_path , help="Simulation to be used here")
if args.method == "POWER":
print("Extrapolating with POWER method...")
all_radii, all_modes = getModesInFile(args.path)
radii = all_radii[0:args.radii]
modes = all_modes
strains = POWER(args.path, radii, modes)
#Create data directories
sim = os.path.split(args.path)[-1]
main_directory = "Extrapolated_Strain"
sim_dir = main_directory + "/" + sim
if not os.path.exists(main_directory):
os.makedirs(main_directory)
if not os.path.exists(sim_dir):
os.makedirs(sim_dir)
for i, (l,m) in enumerate(modes):
np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l"+str(l)+"_m"+str(m)+".dat", strains[i])
Brockton Brendal
committed
print("Extrapolating with Nakano method...")
all_radii, all_modes = getModesInFile(args.path)
radii = all_radii[0:args.radii]
modes = [(0, 0), (1, 0), (1, 1), (2, -1), (2, 0), (2, 1), (2, 2), (3, -2), (3, -1), (3, 0), (3, 1), (3, 2), (3, 3)]
strains = eq_29(args.path, radii, modes)
#Create data directories
sim = os.path.split(args.path)[-1]
main_directory = "Extrapolated_Strain(Nakano_Kerr)"
sim_dir = main_directory + "/" + sim
if not os.path.exists(main_directory):
os.makedirs(main_directory)
if not os.path.exists(sim_dir):
os.makedirs(sim_dir)
strain = iter(strains)
for (l,m) in modes:
for r in radii:
fn = "%s_f2_l%d_m%d_r%.2f_Looped.dat" % (sim, l, m, r)
np.savetxt("./Extrapolated_Strain(Nakano_Kerr)/"+sim+"/"+fn, next(strain))