Newer
Older
# Perl geometry calculator, with special assistance for astronomical coordinates.
# By Stuart Levy, NCSA, University of Illinois, 1997-2001. slevy@ncsa.uiuc.edu.
$pi = 3.14159265358979323846;
$choplimit = 2e-14;
&init_eq2gal;
sub help {
print STDERR <<EOF;
Usage for some tfm.pl functions:
Here "T" is a 4x4 matrix as list of 16 numbers
"v" is a vector (arbitrary length unless specified)
"q" is a 4-component quaternion, real-part (cos theta/2) first
tfm(ax,ay,az, angle)=>T 4x4 rot about axis (ax,ay,az) by angle (degrees)
tfm(tx,ty,tz) =>T 4x4 translation
tfm(s) =>T 4x4 uniform scaling
tfm("scale",sx,sy,sz)=>T 4x4 nonuniform scaling
tfm(ax,ay,ax, angle, cx,cy,cz) 4x4 rot about axis, fixing center cx,cy,cz
transpose( T ) NxN matrix transpose
tmul( T1, T2 ) => T1*T2 4x4 (or 3x3) matrix product
eucinv( T ) => Tinverse 4x4 inverse (assuming T Euclidean rot/trans/uniform scale)
hls2rgb(h,l,s) => (r,g,b) color conversion
svmul( s, v ) => s*v scalar * vector
vmmul( v4, T ) => v' 4-vector * 4x4 matrix => 4-vector
v3mmul( v3, T ) => v3' 3-D point * (3x3 or 4x4) matrix => 3-D point
vsub( va, vb ) => va-vb vector subtraction
vsadd(s,va, vb) => s*va+vb vector scaling & addition
lerp( t, va, vb ) => v linear interpolation from va to vb: (1-t)*va + t*vb
dot( va, vb ) => va.vb dot product
mag( v ) => |v| length of vector v
normalize( v ) => v/|v| vector v, scaled to unit length (or zero length)
t2quat( T ) => q extract rotation-part of 4x4 T into quaternion
quat2t( q ) => T quaternion to 4x4 matrix T
quatmul(qa, qb) => qa*qb quaternion multiplication
qrotbtwn(v3a, v3b) => q quaternion which rotates 3-vector va into vb
lookat(from3,to3,up3,roll) construct 4x4 world->camera w2c matrix (pw * w2c = pc).
aer2t(Ry,Rx,Rz) => T and t2aer(T) => Ry,Rx,Rz Euler angle conversions
vd2tfm(x,y,z,Rx,Ry,Rz) and tfm2vd(T) 4x4 matrix <=> VirDir tx ty tz rx ry rz
eq2dms(v3) => text "hh:mm.m +dd:mm:ss dist"
radec2eq(ra,dec,dist) (ra h:m:s, dec d:m:s, dist) => J2000 3-vector
Tprecess(fromyr,toyr) => 3x3matrix: Pfrom * Tprecess(fromyear,toyear) = Pto
\@Tab = 3x3matrix; a,b are: g(alactic) s(upergalactic) e(qJ2000) z(ecliptic) c(C-gal)
put( list ) print N-vector, or 2x2 or 3x3 or 4x4 matrix
pt( list ) print list on one line, full precision (for copy/pasting)
Each inputline is a perl "eval", e.g.: \@a = (1,2,3); print dot(\@a,\@a); sub me {...}
For multiline input, have a not-yet-closed "{", or use "\\" at end of line.
EOF
}
# &smoothstep(t [,vmin,vmax [,tmin,tmax]] )
sub smoothstep {
local($t, $vmin, $vmax, $tmin, $tmax) = @_;
$vmin = 0 unless defined($vmin);
$vmax = 1 unless defined($vmax);
$t = ($t-$tmin) / ($tmax-$tmin) if $tmax != $tmin;
return $vmin if($t <= 0);
return $vmax if($t >= 1);
return (3 - 2*$t) * $t * $t * ($vmax-$vmin) + $vmin;
}
# &linearstep(t [,vmin,vmax [,tmin,tmax]] )
sub linearstep {
local($t, $vmin, $vmax, $tmin, $tmax) = @_;
$vmin = 0 unless defined($vmin);
$vmax = 1 unless defined($vmax);
$t = ($t-$tmin) / ($tmax-$tmin) if $tmax != $tmin;
return $vmin if($t <= 0);
return $vmax if($t >= 1);
return $t * ($vmax-$vmin) + $vmin;
}
sub mag {
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
if(@_ == 3) {
$dot = $_[0]*$_[0] + $_[1]*$_[1] + $_[2]*$_[2];
} else {
local($i);
for($i=0;$i<@_;$i++) {
$dot += $_[$i]*$_[$i];
}
}
sqrt($dot);
}
sub normalize {
local(@v) = @_;
local($r) = &mag;
$r=1, $v[0] = 1 if $r == 0;
return ($v[0]/$r, $v[1]/$r, $v[2]/$r) if @v == 3;
grep(($_ /= $r) || 1, @v);
}
# Linear interpolation of two vectors:
# &lerp(frac, vector0, vector1) (vector0 and vector1 of equal length)
sub lerp {
local($frac) = shift;
local($dim) = int(($#_+1)/2);
local(@result, $i);
for($i = 0; $i < $dim; $i++) {
push(@result, $_[$i]*(1-$frac) + $_[$i+$dim]*$frac);
}
return @result;
}
sub beginpos {
local($objpos) = @_;
print "{INST transform {\n", $objpos, "}\ngeom { LIST\n"
}
sub endpos {
print "}} #end INST\n";
}
sub tfm {
local(@t) = (1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1);
if(@_ == 1) { # s (scale)
@t[0,5,10] = @_[0,0,0];
} elsif($_[0] eq "scale" && @_ == 4) {
@t[0,5,10] = @_[1,2,3];
} elsif(@_ == 5 && $_[0] eq "scale") { # "scale", scaleby, fixedx,fixedy,fixedz
@t = &tmul(&tfm(-$_[2], -$_[3], -$_[4]),
&tfm($_[1]),
&tfm(@_[2..4]));
} elsif(@_ == 3) { # x,y,z (translate)
@t[12..14] = @_;
} elsif(@_ == 2) { # axis,degrees (named axis, angle)
local($a,$b) = ($_[0],$_[0]);
$a =~ tr/xyzXYZ/120120/;
$b =~ tr/xyzXYZ/201201/;
local($s,$c) = (sin($_[1]*$pi/180), cos($_[1]*$pi/180));
@t[$a*4+$a, $a*4+$b, $b*4+$a, $b*4+$b] = ($c,$s,-$s,$c);
} elsif(@_ == 4) { # x,y,z, degrees (vector axis, angle)
local($ax,$ay,$az) = &normalize(@_[0..2]);
local($s,$c) = (sin($_[3]*$pi/180), cos($_[3]*$pi/180));
local($v) = 1-$c;
@t = ($ax*$ax*$v + $c, $ax*$ay*$v + $az*$s, $ax*$az*$v - $ay*$s, 0,
$ax*$ay*$v - $az*$s, $ay*$ay*$v + $c, $az*$ay*$v + $ax*$s, 0,
$ax*$az*$v + $ay*$s, $ay*$az*$v - $ax*$s, $az*$az*$v + $c, 0,
0, 0, 0, 1);
} elsif(@_ == 7) { # x,y,z, degrees, fixedx,fixedy,fixedz
# Translate fixedxyz to origin, rotate, translate back.
@t = &tmul(&tfm(-$_[4],-$_[5],-$_[6]),
&tfm(@_[0..3]),
&tfm(@_[4..6]));
} else {
print STDERR "&tfm(", join(", ", @_), "): expected 1, 2, 3, 4 or 7 arguments, got ", (@_+0), ": ", join(" ",@_), ".\n";
}
return @t;
}
# &begintfm(x,y,z) translates by x,y,z
# &begintfm(s) scales by s
# &begintfm(axisname,degrees) rotates about that axis by that angle
sub begintfm {
print "{ ";
if($#_ >= 16) {
print "INST transforms { TLIST\n";
while($#_ > 0) {
&puttfm;
print "\n";
}
} elsif($#_ == 15) {
print "INST transform {\n";
&puttfm;
} else {
print "INST transform { # ", join(" ", @_), "\n";
&puttfm(&tfm);
}
print " } geom { LIST\n";
}
sub endtfm {
print "} } # End transformed object\n";
}
# Multiply two (or several) 4x4 matrices, return the product.
sub tmul {
local(@t,$i,$j);
if(@_ == 18) {
return &m3mmul;
}
while(@_ >= 32) {
for($i = 0; $i < 16; $i += 4) {
for($j = 0; $j < 4; $j++) {
$t[$i+$j] = $_[$i ] * $_[$j+16] +
$_[$i+1] * $_[$j+20] +
$_[$i+2] * $_[$j+24] +
$_[$i+3] * $_[$j+28];
}
}
splice(@_, 0,32, @t);
}
return @t;
}
# 3x3 matrix multiply: &mmul(@a, @b) returns @a * @b
sub m3mmul {
local($i,$j,$k);
local(@a) = @_[0..8];
local(@b) = @_[9..17];
local(@c);
for($i = 0; $i < 9; $i+=3) {
$c[$i ] = $a[$i]*$b[0] + $a[$i+1]*$b[3] + $a[$i+2]*$b[6];
$c[$i+1] = $a[$i]*$b[1] + $a[$i+1]*$b[4] + $a[$i+2]*$b[7];
$c[$i+2] = $a[$i]*$b[2] + $a[$i+1]*$b[5] + $a[$i+2]*$b[8];
}
@c;
}
# scalar * vector -> vector
sub svmul {
local(@t);
local($s) = shift;
while($#_ >= 0) {
push(@t, $s*shift);
}
return @t;
}
# 4-vector * 4x4 matrix -> vector
sub vmmul {
if(@_ == 12) {
return &vm3mul; # or, 3-vector * 3x3matrix -> 3-vector
}
local(@t) = (shift,shift,shift,shift);
local(@res, $i);
for($i = 0; $i < 4; $i++) {
push(@res, $t[0]*$_[0] + $t[1]*$_[4] + $t[2]*$_[8] + $t[3]*$_[12]);
shift;
}
return @res;
}
# left-multiply 3-row-vector a by 3x3 matrix T: a*T
sub vm3mul {
if(@_ != 12) {
print STDERR "vm3mul: expected 3-vector and 3x3 matrix, not these ", (0+@_), ":\n",
join(" ", @_), "\n";
return (0,0,0);
}
local(@a) = splice(@_,0,3);
local($i,@v);
return (
$a[0]*$_[0] + $a[1]*$_[3] + $a[2]*$_[6],
$a[0]*$_[1] + $a[1]*$_[4] + $a[2]*$_[7],
$a[0]*$_[2] + $a[1]*$_[5] + $a[2]*$_[8]);
}
# &v3mmul(x,y,z, transform)
# Multiply a 3-D point by a 3x3 or 4x4 matrix as returned by e.g. &tfm()
sub v3mmul {
if(@_ == 12) {
return &vm3mul;
}
local(@res) = &vmmul( @_[0..2], 1, @_[3..18] );
($res[0]/$res[3], $res[1]/$res[3], $res[2]/$res[3]);
}
# &vsub(@a, @b) returns @a - @b
sub vsub {
return &svmul( -1, &vsadd( -1, @_ ) );
}
# &vsadd($s, @a, @b) returns $s*@a + @b, where @a and @b are equal-length vectors
sub vsadd {
local($s) = shift;
local($dim) = int(($#_+1)/2);
local(@result, $i);
for($i = 0; $i < $dim; $i++) {
push(@result, $s * $_[$i] + $_[$i+$dim]);
}
return @result;
}
# &vcomb(sa, @a, sb, @b) returns $sa*@a + $sb*@b
sub vcomb {
local($n1) = (@_/2);
local($b) = $_[$n1];
local($a) = shift;
local(@result);
while(@_ > $n1) {
push(@result, $a*$_[0] + $b*$_[$n1]);
shift(@_);
}
@result;
}
sub inverse {
local($cmd) = join(" ", "echo", @_, "| matrixinvert");
return split(" ", `$cmd`);
}
# Matrix inverse, assuming (without checking!) that the 4x4 matrix
# is a Euclidean similarity (isometry plus possibly uniform scaling).
sub eucinv {
if(@_ != 16) {
printf STDERR "eucinv: expected 4x4 matrix (16 elements), not these %d:\n",
0+@_;
&puttfm;
return (0) x 16;
}
local($i,$j);
local($s) = &dot(@_[0..2], @_[0..2]);
local(@trans, @dst);
for($i = 0; $i < 3; $i++) {
for($j = 0; $j < 3; $j++) {
$dst[$i*4+$j] = $_[$j*4+$i] / $s;
}
$dst[$i*4+3] = 0;
}
@dst[12..15] = (0,0,0,1);
@dst[12..14] = &vmmul( &svmul(-1, @_[12..14]),0, @dst );
$dst[3*4+3] = 1;
return @dst;
}
# lookat(from[3], to[3], upvector[3], roll[1])
# returns world-to-camera matrix which puts camera at "from"
# looking toward "to" with +Y aligned with "upvector"
# rolled counterclockwise by "roll".
sub lookat {
local(@w2c);
local(@from) = @_[0..2];
local(@to) = @_[3..5];
local(@up) = @_[6..8];
local($roll) = $_[9];
@from = (0,0,1) unless defined $from[2];
@to = (0,0,0) unless defined $to[2];
@up = (0,1,0) unless defined $up[2];
@w2c = &m4( &basis(3, 2, &vsub(@from, @to), 1, @up) );
@w2c = &tmul( &tfm('z', $roll), @w2c ) if $roll != 0;
@w2c[12..14] = @from;
@w2c;
}
sub dms2rad {
&dms2d * $pi/180;
}
sub dms2d {
($d,$m,$s) = split(/:/, $d);
}
local($sign) = ($d =~ s/^\s*-//) ? -1 : 1;
$sign * ($d + ($m + $s/60)/60);
sub rad2dms {
local($d) = @_;
local($sign) = $_[1] || " ";
$sign = "-", $d = -$d if $d<0;
$d *= 180/$pi;
local($m) = 60*($d - int($d));
local($s) = 60*($m - int($m));
return sprintf("%s%02d:%02d:%04.1f", $sign, int($d), int($m), $s);
# &eqd2vec(ra(decimaldegrees), dec(decimaldegrees), dist) => J2000 3-vector
sub eqd2vec {
local($ra, $dec, $r) = @_; # Both RA and DEC in degrees!
$r = 1 if $r eq "";
$ra *= $pi/180;
$dec *= $pi/180;
local($cdec) = cos($dec);
return ( $r*cos($ra)*$cdec, $r*sin($ra)*$cdec, $r*sin($dec) );
}
# &radec2eq(ra(hh:mm:ss), dec(dd:mm:ss), dist) => J2000 3-vector
sub radec2eq {
local($ra, $dec, $r) = @_;
$ra = &hms2d($ra);
$dec = &dms2d($dec);
&eqd2vec($ra, $dec, $r);
}
# Supergalactic (sgx, sgy, sgz) to J2000 equatorial (RA, Dec, Dist)
sub eq2sg {
&vm3mul( @_, @Tes );
}
sub radec2eqbasis {
local($ra, $dec) = @_;
$ra = &hms2d($ra) if $ra =~ /:/;
$dec = &dms2d($dec) if $dec =~ /:/;
$ra *= $pi/180;
$dec *= $pi/180;
# vector to galaxy (equatorial coords)
local(@z) = (cos($ra)*cos($dec), sin($ra)*cos($dec), sin($dec));
# project @z out of (0,0,1)
local(@x) = &normalize( -$z[0]*$z[2], -$z[1]*$z[2], 1 - $z[2]*$z[2] );
local(@y) = &cross( @z, @x );
(@x, @y, @z);
}
# &eq2dms( J2000 3-vector ) => ( hh:mm.m, dd:mm.m, dist )
sub eq2dms {
local($r, $rxy);
local(@eq) = @_;
local($ra, $dec);
$rxy = sqrt($eq[0]*$eq[0] + $eq[1]*$eq[1]);
$dec = atan2($eq[2], $rxy);
$ra = atan2($eq[1], $eq[0]);
$ra += 2*$pi if($ra < 0);
return(&rad2dms($ra/15), &rad2dms($dec,"+"), sqrt(&dot(@eq,@eq)));
}
# &gal2dms( Galactic 3-vector ) => ( londd:mm:ss.s, latdd:mm:ss.s, dist )
sub gal2dms {
local($r, $rxy);
local(@eq) = @_;
local($lon, $lat);
$rxy = sqrt($eq[0]*$eq[0] + $eq[1]*$eq[1]);
$lat = atan2($eq[2], $rxy);
$lon = atan2($eq[1], $eq[0]);
$lon += 2*$pi if($lon < 0);
return(&rad2dms($lon), &rad2dms($lat,"+"), sqrt(&dot(@eq,@eq)));
}
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
sub init_eq2gal {
$pi = 3.14159265358979;
# Both the following matrices are taken from SLALIB routines:
#
# Each column of this matrix is a direction vector in the
# J2000 equatorial system, expressed in (L2,B2) galactic coordinates.
# Equivalently, each row is a galactic (L2,B2) direction vector
# expressed in J2000 equatorial coordinates.
#
@Tge = (
-0.054875539726,-0.873437108010,-0.483834985808,
+0.494109453312,-0.444829589425,+0.746982251810,
-0.867666135858,-0.198076386122,+0.455983795705);
#
# Each column of this matrix is a direction vector in the (L2,B2)
# *galactic* system, expressed in *supergalactic* coordinates.
# Equivalently, each row is a supergalactic direction vector
# expressed in (L2,B2) galactic coordinates.
#
@Tsg = (
-0.735742574804,+0.677261296414,+0.000000000000,
-0.074553778365,-0.080991471307,+0.993922590400,
+0.673145302109,+0.731271165817,+0.110081262225);
@Tse = &m3mmul(@Tsg,@Tge);
@Tgs = &transpose(@Tsg);
@Tes = &transpose(@Tse);
@Teg = &transpose(@Tge);
# C-galaxy coordinates = galactic(L2,B2) coordinates, negating X and Y.
@Tcg = @Tgc = (-1,0,0, 0,-1,0, 0,0,1);
@Tcs = &m3mmul( @Tcg, @Tgs );
@Tsc = &m3mmul( @Tsg, @Tgc );
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
@Tce = &m3mmul( @Tcg, @Tge );
@Tec = &transpose( @Tce );
@Tze = &m3( &tfm('x', 23.4393) ); # Ecliptic ("zodiac") to J2000 (3x3 matrix)
@Tez = &transpose(@Tze);
@Tzc = &m3mmul( @Tze, @Tec );
@Tcz = &transpose(@Tzc);
@Tzg = &m3mmul( @Tze, @Teg );
@Tgz = transpose(@Tzg);
@Tzs = &m3mmul( @Tze, @Tes );
@Tsz = transpose(@Tzs);
}
# &Tprecess(fromyear, toyear)
# precession of equatorial coordinates from one epoch to another.
# returns 3x3 matrix: vm3mul( p_fromyear, &Tprecess(fromyear,toyear) ) = p_toyear
# Adapted from P.T. Wallace's SLALIB routine PREC.
# Applies to limited range of years. From the notes:
# 1) The epochs are TDB (loosely ET) Julian epochs.
#
# 2) The matrix is in the sense V(EP1) = RMATP * V(EP0)
#
# 3) Though the matrix method itself is rigorous, the precession
# angles are expressed through canonical polynomials which are
# valid only for a limited time span. There are also known
# errors in the IAU precession rate. The absolute accuracy
# of the present formulation is better than 0.1 arcsec from
# 1960AD to 2040AD, better than 1 arcsec from 1640AD to 2360AD,
# and remains below 3 arcsec for the whole of the period
# 500BC to 3000AD. The errors exceed 10 arcsec outside the
# range 1200BC to 3900AD, exceed 100 arcsec outside 4200BC to
# 5600AD and exceed 1000 arcsec outside 6800BC to 8200AD.
# The SLALIB routine sla_PRECL implements a more elaborate
# model which is suitable for problems spanning several
# thousand years.
# References:
# Lieske,J.H., 1979. Astron.Astrophys.,73,282. equations (6) & (7), p283.
# Kaplan,G.H., 1981. USNO circular no. 163, pA2.
sub Tprecess {
local($from, $to) = @_;
$to = 2000 if $to == 0 ;
$from = 2000 if $from == 0;
local($t0) = ($from - 2000) / 100; # "from" in centuries-from-2000
local($dt) = ($to - $from) / 100; # delta time in centuries
# delta-time, scaled so $dtdeg * arc-sec-per-century = degrees
local($dtdeg) = $dt / 3600;
local($w) = 2306.2181+(1.39656-0.000139*$t0)*$t0;
local($zetadeg) = ($w+((0.30188-0.000344*$t0)+0.017998*$dt)*$dt)*$dtdeg;
local($zdeg) = ($w+((1.09468+0.000066*$t0)+0.018203*$dt)*$dt)*$dtdeg;
local($thetadeg) = ((2004.3109+(-0.85330-0.000217*$t0)*$t0)
+((-0.42665-0.000217*$t0)-0.041833*$dt)*$dt)*$dtdeg;
local(@q) = &quatmul( &quatmul(
&ax2quat( 'z', $zetadeg ),
&ax2quat( 'y', -$thetadeg ) ),
&ax2quat( 'z', $zdeg ) );
&m3( &quat2t( @q ) );
local(@t) = (0+@_ == 9) ? &m4(@_) : (0+@_ == 16) ? @_ : &tfm(@_);
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
local($s) = &mag( @t[0..2] );
# A rotation matrix is
# ww+xx-yy-zz 2(xy-wz) 2(xz+wy)
# 2(xy+wz) ww-xx+yy-zz 2(yz-wx)
# 2(xz-wy) 2(yz+wx) ww-xx-yy+zz
# ww+xx+yy+zz = ss
local($ww,$xx,$yy,$zz);
local($x,$y,$z,$w);
$ww = ($s + $t[0*4+0] + $t[1*4+1] + $t[2*4+2]); # 4 * w^2
$xx = ($s + $t[0*4+0] - $t[1*4+1] - $t[2*4+2]);
$yy = ($s - $t[0*4+0] + $t[1*4+1] - $t[2*4+2]);
$zz = ($s - $t[0*4+0] - $t[1*4+1] + $t[2*4+2]);
local($max) = $ww;
$max = $xx if $max < $xx;
$max = $yy if $max < $yy;
$max = $zz if $max < $zz;
if($ww == $max) {
$w = sqrt($ww) * 2; # 4w
$x = ($t[2*4+1] - $t[1*4+2]) / $w; # 4wx/4w
$y = ($t[0*4+2] - $t[2*4+0]) / $w; # 4wy/4w
$z = ($t[1*4+0] - $t[0*4+1]) / $w; # 4wz/4w
$w *= .25; # w
} elsif($xx == $max) {
$x = sqrt($xx) * 2; # 4x
$w = ($t[2*4+1] - $t[1*4+2]) / $x; # 4wx/4x
$y = ($t[1*4+0] + $t[0*4+1]) / $x; # 4xy/4x
$z = ($t[0*4+2] + $t[2*4+0]) / $x; # 4xz/4x
$x *= .25; # x
} elsif($yy == $max) {
$y = sqrt($yy) * 2; # 4y
$w = ($t[0*4+2] - $t[2*4+0]) / $y; # 4wy/4y
$x = ($t[1*4+0] + $t[0*4+1]) / $y; # 4xy/4y
$z = ($t[2*4+1] + $t[1*4+2]) / $y; # 4yz/4y
$y *= .25; # y
} else {
$z = sqrt($zz) * 2; # 4z
$w = ($t[1*4+0] - $t[0*4+1]) / $z; # 4wz/4z
$x = ($t[0*4+2] + $t[2*4+0]) / $z; # 4xz/4z
$y = ($t[2*4+1] + $t[1*4+2]) / $z; # 4yz/4z
$z *= .25;
}
$s = sqrt($s);
(-$w/$s, $x/$s,$y/$s,$z/$s);
}
# @quat = &t2quat( transform )
# Convert 4x4 matrix into unit quaternion
sub old_t2quat {
local(@t) = (0+@_ == 16) ? @_ : &tfm(@_);
local(@v) = ($t[9]-$t[6], $t[2]-$t[8], $t[4]-$t[1]);
local($scl) = &mag(@t[0..2]);
local($trace) = $scl ? ($t[0]+$t[5]+$t[10])/$scl : 3; # 1 + 2 cos(angle)
$trace = -1 if $trace < -1;
$trace = 3 if $trace > 3;
local($s) = sqrt(3 - $trace) / 2; # sin(angle/2)
if($trace < -.25) {
# Angle near pi; sin(angle) is small, so use cos-related mat elements
local($c) = ($trace-1)/2; # cos(angle)
local($v) = 1-$c; # versine(angle)
local($i, $t);
if($t[0] > -.5) {
$v[0] = sqrt(($t[0]-$c)/$v) * ($v[0]<0 ? -1 : 1);
$v[1] = ($t[1]+$t[4])/(2*$v*$v[0]);
$v[2] = ($t[2]+$t[8])/(2*$v*$v[0]);
} elsif($t[5] > -.5) {
$v[1] = sqrt(($t[5]-$c)/$v) * ($v[1]<0 ? -1 : 1);
$v[0] = ($t[1]+$t[4])/(2*$v*$v[1]);
$v[2] = ($t[6]+$t[9])/(2*$v*$v[1]);
} elsif($t[10] > $c) { # it should be > -.5 too, but just in case...
$v[2] = sqrt(($t[10]-$c)/$v) * ($v[2]<0 ? -1 : 1);
$v[0] = ($t[2]+$t[8])/(2*$v*$v[2]);
$v[1] = ($t[6]+$t[9])/(2*$v*$v[2]);
}
}
local($v) = &mag(@v);
$s /= -$v if $v>0;
return ( sqrt(1 + $trace)/2, $v[0]*$s, $v[1]*$s, $v[2]*$s );
}
# @transform = &quat2t( quaternion )
# Turn quaternion into 4x4 matrix
sub quat2t {
local(@q) = @_;
local($u) = &mag;
if(@_ == 3) {
@q = ($u >= 1) ? ( 0, &svmul(1/$u, @_) ) : ( sqrt(1-$u*$u), @_ );
} elsif($u != 1) {
@q = &svmul(1/$u, @_);
}
local($x2, $xy, $xz, $xw, $y2, $yz, $yw, $z2, $zw);
$x2 = $q[1]*$q[1]; $xy = $q[1]*$q[2]; $xz = $q[1]*$q[3]; $xw = $q[1]*$q[0];
$y2 = $q[2]*$q[2]; $yz = $q[2]*$q[3]; $yw = $q[2]*$q[0];
$z2 = $q[3]*$q[3]; $zw = $q[3]*$q[0];
(
1-2*($y2+$z2), 2*($xy+$zw), 2*($xz-$yw), 0,
2*($xy-$zw), 1-2*($x2+$z2), 2*($yz+$xw), 0,
2*($xz+$yw), 2*($yz-$xw), 1-2*($x2+$y2), 0,
0, 0, 0, 1
);
}
sub quat2t_junk {
if(@_ == 3) {
local($sinhalf) = &mag(@_); # sin(angle/2)
local($coshalf) = ($sinhalf>-1&&$sinhalf<1) ? sqrt(1 - $sinhalf*$sinhalf) : 0;
return &tfm(&normalize(@_), 2 * atan2($sinhalf, $coshalf) * 180/$pi);
}
local(@v) = &normalize(@_[1..3]); # ijk components
local($angle) = 2 * atan2(sqrt(1-$_[0]*$_[0]), $_[0]); # 2 acos q.re
return &tfm(@v, $angle*180/$pi);
}
# Quaternion to axis and angle(degrees), as taken by tfm: x,y,z, angle
sub quat2a {
local(@q) = @_;
local($u);
if(@_ == 3) {
$u = &mag;
@q = ($u >= 1) ? ( 0, &svmul(1/$u, @_) ) : ( sqrt(1-$u*$u), @_ );
}
( &normalize( @q[1..3] ), atan2( &mag(@q[1..3]), $q[0] ) * 360/$pi );
}
# Convert Euler angles -- in the order used by the CAVE,
# Y(azim) then X(elev) then Z(roll), with Z closest to object coords --
# into a quaternion.
# Given our order convention, we multiply quat(roll) * quat(elev) * quat(azim).
sub aer2quat {
local($az,$el,$ro) = @_;
# sines and cosines of half-angles
local($ca, $sa) = (cos($az*$pi/360), sin($az*$pi/360)); # azim: Y rot
local($ce, $se) = (cos($el*$pi/360), sin($el*$pi/360)); # elev: X rot
local($cr, $sr) = (cos($ro*$pi/360), sin($ro*$pi/360)); # roll: Z rot
# quat(elev) * quat(azim)
(@qelaz) = ( $ca*$ce, $ca*$se, $sa*$ce, -$sa*$se );
#X# debug
local(@result) = &quatmul( $cr,0,0,$sr, &quatmul( $ce,$se,0,0, $ca,0,$sa,0 ));
local(@result2) = &quatmul( $cr,0,0,$sr, @qelaz );
@debug = &vsub(@result, @result2);
@result2;
}
sub m4 {
return @_ if @_ == 16;
( @_[0..2], 0, @_[3..5], 0, @_[6..8], 0, 0,0,0,1 );
}
sub m3 {
return @_ if @_ == 9;
@_[0..2, 4..6, 8..10];
}
sub aer2t {
&quat2t( &aer2quat( @_ ) );
}
sub t2aer {
local(@M) = &m3(@_);
local($rx,$ry,$rz);
@M = &svmul( 1/&mag( @M[6..8] ), @M );
local($sx) = -$M[2*3+1];
local($cx) = ($sx<-1 || $sx>1) ? 0 : sqrt(1 - $sx*$sx);
$rx = atan2( $sx, $cx ) * 180/$pi;
if($cx < .001) {
$ry = atan2( $M[1*3+0], $M[0*3+0] ) * 180/$pi;
$ry = -$ry if $rx < 0;
$rz = 0;
} else {
$ry = atan2( $M[2*3+0], $M[2*3+2] ) * 180/$pi;
$rz = atan2( $M[0*0+1], $M[1*3+1] ) * 180/$pi;
}
($ry, $rx, $rz);
}
# Convert quaternion to Euler angles
sub quat2aer {
local($w,$x,$y,$z);
if(@_ == 3) {
local($u) = &mag;
($w,$x,$y,$z) = $u>1 ? (0, &svmul(1/$u, @_)) : (sqrt(1-$u*$u), @_);
} else {
($w,$x,$y,$z) = &normalize(@_);
}
local($srx) = 2*($x*$w - $y*$z);
local($rx) = atan2( $srx, ($srx<-1||$srx>1) ? 0 : sqrt(1-$srx*$srx) );
local($ry) = atan2( 2*($x*$z + $y*$w), 1 - 2*($x*$x + $y*$y) );
}
# @quataxb = &quatmul( @quata, @quatb )
# Quaternion multiplication
sub quatmul {
($_[0]*$_[4] - $_[1]*$_[5] - $_[2]*$_[6] - $_[3]*$_[7], # rr-ii-jj-kk
$_[0]*$_[5] + $_[1]*$_[4] - $_[2]*$_[7] + $_[3]*$_[6], # ri+ir-jk+kj
$_[0]*$_[6] + $_[2]*$_[4] - $_[3]*$_[5] + $_[1]*$_[7], # rj+jr-ki+ik
$_[0]*$_[7] + $_[3]*$_[4] - $_[1]*$_[6] + $_[2]*$_[5]);# rk+kr-ij+ji
}
sub quatdiv {
($_[0]*$_[4] + $_[1]*$_[5] + $_[2]*$_[6] + $_[3]*$_[7], # rr-ii-jj-kk
- $_[0]*$_[5] + $_[1]*$_[4] + $_[2]*$_[7] - $_[3]*$_[6], # -ri+ir+jk-kj
- $_[0]*$_[6] + $_[2]*$_[4] + $_[3]*$_[5] - $_[1]*$_[7], # -rj+jr+ki-ik
- $_[0]*$_[7] + $_[3]*$_[4] + $_[1]*$_[6] - $_[2]*$_[5]);# -rk+kr+ij-ji
}
sub quatinv {
(-$_[0], @_[1..3]);
}
# x y z rx ry rz (multiplied in the virdir order, rz*rx*ry*transl(x,y,z)) => T
sub vd2tfm {
local(@vdwf) = @_;
@vdwf = split(' ', $vdwf[0]) if(@vdwf == 1);
if(@vdwf == 16) {
return @vdwf;
} elsif(@vdwf == 6 || @vdwf == 7) {
return &tmul( &tfm('z', $vdwf[5]),
&tfm('x', $vdwf[3]),
&tfm('y', $vdwf[4]),
&tfm( @vdwf[0..2] ) );
} else {
print STDERR "$0: vd2tfm: expected either 6 numbers (x y z rx ry rz) or 16, not ``$tfm''\n";
return &tfm(1);
}
}
sub tfm2vd {
local(@yxz) = &t2aer;
(@_[12..14], @yxz[1,0,2]);
}
# &ax2quat( 'x'|'y'|'z', degrees )
%__ax2quat = ('x',0, 'y',1, 'z',2, 'X',0, 'Y',1, 'Z',2);
sub ax2quat {
local($axis) = $_[0];
$axis = $__ax2quat{$axis} if defined $__ax2quat{$axis};
local($halfang) = $_[1] * $pi/360;
local(@q) = (cos($halfang), 0,0,0);
$q[$axis+1] = sin($halfang);
@q;
}
sub vd2quat {
local(@vdwf) = @_;
@vdwf = split(' ', $vdwf[0]) if(@vdwf == 1);
if(@vdwf == 16) {
return &t2quat(@vdwf);
}
unshift(@vdwf, 0,0,0) if(@vdwf == 3);
if(@vdwf == 6 || @vdwf == 7) {
&quatmul( &ax2quat('z', $vdwf[5]),
&quatmul( &ax2quat('x', $vdwf[3]),
&ax2quat('y', $vdwf[4]) ) );
} else {
print STDERR "$0: vd2quat: expected either 6 numbers (x y z rx ry rz) or 16, not ``", join(" ",@_), "''\n";
return (1,0,0,0);
}
}
# &qrotbtwn(x1,y1,z1, x2,y2,z2) constructs the quaternion which rotates
# vector x1,y1,z1 into x2,y2,z2
sub qrotbtwn {
# Direction is (x2,y2,z2) cross (x1,y1,z1)
local(@ijk) = &normalize(&cross(@_));
local($cost) = &dot(@_) / sqrt(&dot(@_[0..2,0..2]) * &dot(@_[3..5,3..5]));
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
# magnitude of ijk is sin(angle/2)
return ( sqrt((1+$cost)/2), $ijk[0]*$sinhalf, $ijk[1]*$sinhalf,
$ijk[2]*$sinhalf );
}
# &puttfm( numbers ) prints an NxN transformation, N numbers per line
sub puttfm {
local($n) = int(sqrt(@_));
local($fmt) = join(" ", ("%10.7g") x $n) . "\n";
while(@_) {
printf $fmt, splice(@_, 0, $n);
}
}
sub put {
if(grep(/[^-+eE.\d]/, @_)) {
print join(" ", @_), "\n";
return;
}
local($n) = (0+@_);
local(@data) = @_;
grep($_ = ($_ < -$choplimit || $_ > $choplimit) ? $_ : 0, @data);
if($n <= 2) {
print join(" ", @_), "\n";
} elsif($n <= 8) {
printf "%10.7g " x $n . "\n", @_;
} else {
&puttfm(@data);
}
}
sub pt {
if(grep(/[^-+eE.\d]/, @_)) {
print join(" ", @_), "\n";
} else {
while(@_) {
printf "%.11g%s", shift(@_), (@_>0?" ":"\n");
}
}
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
}
sub deg {
$_[0] * 180/$pi;
}
sub rad {
$_[0] * $pi/180;
}
sub tandeg {
sin(&rad) / cos(&rad);
}
sub log10 {
0.434294481903252 * log($_[0]);
}
# Minimum of a bunch of numbers
sub min {
local($min) = $_[0];
while($#_ >= 0) {
shift;
$min = $_[0] if $min > $_[0];
}
return $min;
}
# Maximum of a bunch of numbers
sub max {
local($max) = $_[0];
while($#_ >= 0) {
shift;
$max = $_[0] if $max < $_[0];
}
return $max;
}
sub dot {
local($dot) = 0;
local($len) = int(@_/2);
local($i);
for($i=0;$i<$len;$i++) {
$dot += $_[$i] * $_[$i+$len];
}
$dot;
}
sub cross {
return ($_[1]*$_[5] - $_[2]*$_[4],
$_[2]*$_[3] - $_[0]*$_[5],
$_[0]*$_[4] - $_[1]*$_[3]);
}
# Round to nearest multiple of
sub round {
local($_,$mod,$zero) = @_;
$mod = 1 unless $mod;
return $mod * int( ($_-$zero)/$mod + ($_ < $zero ? -.5 : .5) ) + $zero;
}
# Produce an orthonormal basis, given partial information.
# Input is the dimension and a list of row vectors:
# d,
# i, ai0,ai1,...,ai<d-1>,
# j, aj0,aj1,...,aj<d-1>,
# ...
# Returns a d by d orthonormal matrix, with i'th row equal to ai0...ai<d-1>,
# etc. Indices run from 0 to d-1 (not 1 to d).
sub basis {
local($d) = shift;
local(@done) = (0) x $d;
# @M is the list of vectors assigned so far.
# @T is the final output array, with members of @M
# arranged in appropriate rows.
# @done is an array with zeros for unassigned rows, ones elsewhere.
for($done = 0; $done < $d; $done++) {
if(@_) {
print STDERR "basis($d, ...): didn't get a whole number of <row>,<vector> tuples!\n";
@_ = ();
}
for($row = 0; $row < $d && $done[$row]; $row++) {
}
@v = (0) x $d;
$v[$row] = 1;
}
for($j = 0; $j < $d; $j++) {
# Orthogonalize against all preceding rows.
for($i = 0; $i < $#M; $i += $d) {
$dot = &dot(@M[$i..$i+$d-1], @v);
@v = &vsadd(-$dot, @M[$i..$i+$d-1], @v);
}
# Normalize
$dot = &dot(@v, @v);
# Recover from nearly-degenerate case.
# We perturb one coordinate and try again.
$v[($j+$row) % $d] += 1;
}
@v = &svmul(1/sqrt($dot), @v);
push(@M, @v);
@T[$row*$d .. $row*$d+$d-1] = @v;
$done[$row] = 1;
}
local($det) = &det(@T);
if($det < 0) {
@T[$row*$d..$row*$d+$d-1] = &svmul( -1, @T[$row*$d..$row*$d+$d-1] );
}