Skip to content
Snippets Groups Projects
tfm.pl 26.6 KiB
Newer Older
slevy's avatar
slevy committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
#! /usr/bin/perl

# Perl geometry & astronomy calculator/library.
# Stuart Levy, slevy@ncsa.uiuc.edu

$pi = 3.14159265358979323846;
$choplimit = 2e-14;
&init_eq2gal;

sub help {
  print STDERR <<EOF;
Usage for some tfm.pl functions:
Here "T" is a 4x4 matrix as list of 16 numbers
     "v" is a vector (arbitrary length unless specified)
     "q" is a 4-component quaternion, real-part (cos theta/2) first
  tfm(ax,ay,az, angle)=>T  4x4 rot about axis (ax,ay,az) by angle (degrees)
  tfm(tx,ty,tz)	      =>T  4x4 translation
  tfm(s)              =>T  4x4 uniform scaling
  tfm("scale",sx,sy,sz)=>T 4x4 nonuniform scaling
  tfm(ax,ay,ax, angle, cx,cy,cz)  4x4 rot about axis, fixing center cx,cy,cz
  transpose( T )	   NxN matrix transpose
  tmul( T1, T2 ) => T1*T2  4x4 (or 3x3) matrix product
  eucinv( T ) => Tinverse  4x4 inverse (assuming T Euclidean rot/trans/scale)
  hls2rgb(h,l,s) => (r,g,b) color conversion
  svmul( s, v ) => s*v	   scalar * vector
  vmmul( v4, T ) => v'	   4-vector * 4x4 matrix => 4-vector
  v3mmul( v3, T ) => v3'   3-D point * (3x3 or 4x4) matrix => 3-D point
  vsub( va, vb ) => va-vb  vector subtraction
  vsadd(s,va, vb) => s*va+vb  vector scaling & addition
  lerp( t, va, vb ) => v   linear interpolation from va to vb: (1-t)*va + t*vb
  dot( va, vb ) => va.vb   dot product
  mag( v )      => |v|     length of vector v
  normalize( v ) => v/|v|  vector v, scaled to unit length (or zero length)
  t2quat( T ) => q	   extract rotation-part of 4x4 T into quaternion
  quat2t( q ) => T	   quaternion to 4x4 matrix T
  quatmul(qa, qb) => qa*qb quaternion multiplication
  qrotbtwn(v3a, v3b) => q  quaternion which rotates 3-vector va into vb
  lookat(from3,to3,up3,roll) construct w2c matrix.
  aer2t(Ry,Rx,Rz) => T     and  t2aer(T) => Ry,Rx,Rz
  vd2tfm(x,y,z,Rx,Ry,Rz)   and  tfm2vd(T)  4x4 matrix <=> tx ty tz rx ry rz
  eq2dms(v3) => "hh:mm.m +dd:mm:ss dist"
  radec2eqbasis(ra,dec) => 3x3matrix (ra,dec DEGREES -> XY=sky-plane, +Ynorth)
  list("string")	   converts blank/comma/brace-separated string to list
  put( list )		   print N-vector, or 3x3 or 4x4 matrix
  pt( list )		   print list on one line (for copy/pasting)
Each line is a perl "eval", e.g.: \@a = (1,2,3); print vdot(\@a,\@a); sub me {...}
Previous line's answer saved in "\@_"; first scalar saved in \"\$_\".
EOF
  
}

# &smoothstep(t [,vmin,vmax [,tmin,tmax]] )
sub smoothstep {
   local($t, $vmin, $vmax, $tmin, $tmax) = @_;
   $vmin = 0 unless defined($vmin);
   $vmax = 1 unless defined($vmax);
   $t = ($t-$tmin) / ($tmax-$tmin) if $tmax != $tmin;
   return $vmin if($t <= 0);
   return $vmax if($t >= 1);
   return (3 - 2*$t) * $t * $t * ($vmax-$vmin) + $vmin;
}

# &linearstep(t [,vmin,vmax [,tmin,tmax]] )
sub linearstep {
   local($t, $vmin, $vmax, $tmin, $tmax) = @_;
   $vmin = 0 unless defined($vmin);
   $vmax = 1 unless defined($vmax);
   $t = ($t-$tmin) / ($tmax-$tmin) if $tmax != $tmin;
   return $vmin if($t <= 0);
   return $vmax if($t >= 1);
   return $t * ($vmax-$vmin) + $vmin;
}

sub mag {
   local($dot);
   if(@_ == 3) {
	$dot = $_[0]*$_[0] + $_[1]*$_[1] + $_[2]*$_[2];
   } else {
	local($i);
	for($i=0;$i<@_;$i++) {
	    $dot += $_[$i]*$_[$i];
	}
   }
   sqrt($dot);
}

sub normalize {
   local(@v) = @_;
   local($r) = &mag;
   $r=1, $v[0] = 1 if $r == 0;
   return ($v[0]/$r, $v[1]/$r, $v[2]/$r) if @v == 3;
   grep(($_ /= $r) || 1, @v);
}

# Linear interpolation of two vectors:
#  &lerp(frac,  vector0,  vector1)  (vector0 and vector1 of equal length)
sub lerp {
    local($frac) = shift;
    local($dim) = int(($#_+1)/2);
    local(@result, $i);

    for($i = 0; $i < $dim; $i++) {
	push(@result, $_[$i]*(1-$frac) + $_[$i+$dim]*$frac);
    }
    return @result;
}

sub beginpos {
   local($objpos) = @_;
   print "{INST transform {\n", $objpos, "}\ngeom { LIST\n" 
}

sub endpos {
    print "}} #end INST\n";
}

sub tfm {
    local(@t) = (1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1);

    if(@_ == 1) {	# s (scale)
	@t[0,5,10] = @_[0,0,0];

    } elsif($_[0] eq "scale" && @_ == 4) {
	@t[0,5,10] = @_[1,2,3];

    } elsif(@_ == 5 && $_[0] eq "scale") {  # "scale", scaleby, fixedx,fixedy,fixedz
	@t = &tmul(&tfm(-$_[2], -$_[3], -$_[4]),
		   &tfm($_[1]),
		   &tfm(@_[2..4]));

    } elsif(@_ == 3) { # x,y,z (translate)
	@t[12..14] = @_;

    } elsif(@_ == 2) { # axis,degrees  (named axis, angle)
	local($a,$b) = ($_[0],$_[0]);
	$a =~ tr/xyzXYZ/120120/;
	$b =~ tr/xyzXYZ/201201/;
	local($s,$c) = (sin($_[1]*$pi/180), cos($_[1]*$pi/180));
	@t[$a*4+$a, $a*4+$b, $b*4+$a, $b*4+$b] = ($c,$s,-$s,$c);

    } elsif(@_ == 4) {	# x,y,z, degrees  (vector axis, angle)

	local($ax,$ay,$az) = &normalize(@_[0..2]);
	local($s,$c) = (sin($_[3]*$pi/180), cos($_[3]*$pi/180));
	local($v) = 1-$c;
	@t = ($ax*$ax*$v + $c,  $ax*$ay*$v + $az*$s, $ax*$az*$v - $ay*$s, 0,
	      $ax*$ay*$v - $az*$s, $ay*$ay*$v + $c,  $az*$ay*$v + $ax*$s, 0,
	      $ax*$az*$v + $ay*$s, $ay*$az*$v - $ax*$s, $az*$az*$v + $c, 0,
		0, 0, 0, 1);

    } elsif(@_ == 7) { # x,y,z, degrees, fixedx,fixedy,fixedz
        # Translate fixedxyz to origin, rotate, translate back.
        @t = &tmul(&tfm(-$_[4],-$_[5],-$_[6]),
                   &tfm(@_[0..3]),
                   &tfm(@_[4..6]));
    } else {
	print STDERR "&tfm(", join(", ", @_), "): expected 1, 2, 3, 4 or 7 arguments, got ", (@_+0), ": ", join(" ",@_), ".\n";

    }
    return @t;
}

# &begintfm(x,y,z)  translates by x,y,z
# &begintfm(s)		  scales by s
# &begintfm(axisname,degrees) rotates about that axis by that angle
sub begintfm {
    print "{ ";
    if($#_ >= 16) {
	print "INST transforms { TLIST\n";
	while($#_ > 0) {
	    &puttfm;
	    print "\n";
	}
    } elsif($#_ == 15) {
	print "INST transform {\n";
	&puttfm;
    } else {
	print "INST transform { # ", join(" ", @_), "\n";
	&puttfm(&tfm);
    }
    print "   } geom { LIST\n";
}

sub endtfm {
    print "} } # End transformed object\n";
}

# Multiply two (or several) 4x4 matrices, return the product.
sub tmul {
    local(@t,$i,$j);
    if(@_ == 18) {
	return &m3mmul;
    }
    while(@_ >= 32) {
      for($i = 0; $i < 16; $i += 4) {
	for($j = 0; $j < 4; $j++) {
	    $t[$i+$j] =	$_[$i  ] * $_[$j+16] +
			$_[$i+1] * $_[$j+20] +
			$_[$i+2] * $_[$j+24] +
			$_[$i+3] * $_[$j+28];
	}
      }
      splice(@_, 0,32, @t);
    }
    return @t;
}

# 3x3 matrix multiply: &mmul(@a, @b) returns @a * @b
sub m3mmul {
  local($i,$j,$k);
  local(@a) = @_[0..8];
  local(@b) = @_[9..17];
  local(@c);
  for($i = 0; $i < 9; $i+=3) {
    $c[$i  ] = $a[$i]*$b[0] + $a[$i+1]*$b[3] + $a[$i+2]*$b[6];
    $c[$i+1] = $a[$i]*$b[1] + $a[$i+1]*$b[4] + $a[$i+2]*$b[7];
    $c[$i+2] = $a[$i]*$b[2] + $a[$i+1]*$b[5] + $a[$i+2]*$b[8];
  }
  @c;
}


# scalar * vector -> vector
sub svmul {
    local(@t);
    local($s) = shift;
    while($#_ >= 0) {
	push(@t, $s*shift);
    }
    return @t;
}

# 4-vector * 4x4 matrix -> vector
sub vmmul {
    if(@_ == 12) {
	return &vm3mul;	# or, 3-vector * 3x3matrix -> 3-vector
    }
    local(@t) = (shift,shift,shift,shift);
    local(@res, $i);
    for($i = 0; $i < 4; $i++) {
	push(@res, $t[0]*$_[0] + $t[1]*$_[4] + $t[2]*$_[8] + $t[3]*$_[12]);
	shift;
    }
    return @res;
}

# left-multiply 3-row-vector a by 3x3 matrix T: a*T
sub vm3mul {
  if(@_ != 12) {
    print STDERR "vm3mul: expected 3-vector and 3x3 matrix, not these ", (0+@_), ":\n",
	join(" ", @_), "\n";
    return (0,0,0);
  }
  local(@a) = splice(@_,0,3);
  local($i,@v);
  return (
	$a[0]*$_[0] + $a[1]*$_[3] + $a[2]*$_[6],
	$a[0]*$_[1] + $a[1]*$_[4] + $a[2]*$_[7],
	$a[0]*$_[2] + $a[1]*$_[5] + $a[2]*$_[8]);
}

# &v3mmul(x,y,z, transform)
# Multiply a 3-D point by a 3x3 or 4x4 matrix as returned by e.g. &tfm()
sub v3mmul {
    if(@_ == 12) {
	return &vm3mul;
    }
    local(@res) = &vmmul( @_[0..2], 1, @_[3..18] );
    ($res[0]/$res[3], $res[1]/$res[3], $res[2]/$res[3]);
}

# &vsub(@a, @b) returns @a - @b
sub vsub {
  return &svmul( -1, &vsadd( -1, @_ ) );
}

# &vsadd($s, @a, @b) returns $s*@a + @b, where @a and @b are equal-length vectors
sub vsadd {
    local($s) = shift;
    local($dim) = int(($#_+1)/2);
    local(@result, $i);

    for($i = 0; $i < $dim; $i++) {
	push(@result, $s * $_[$i] + $_[$i+$dim]);
    }
    return @result;
}

# &vcomb(sa, @a, sb, @b) returns $sa*@a + $sb*@b
sub vcomb {
    local($n1) = (@_/2);
    local($b) = $_[$n1];
    local($a) = shift;
    local(@result);
    while(@_ > $n1) {
	push(@result, $a*$_[0] + $b*$_[$n1]);
	shift(@_);
    }
    @result;
}

sub inverse {
    local($cmd) = join(" ", "echo", @_, "| matrixinvert");
    return split(" ", `$cmd`);
}

# Matrix inverse, assuming (without checking!) that the 4x4 matrix
# is a Euclidean similarity (isometry plus possibly uniform scaling).
sub eucinv {
  if(@_ != 16) {
    printf STDERR "eucinv: expected 4x4 matrix (16 elements), not these %d:\n",
	0+@_;
    &puttfm;
    return (0) x 16;
  }
  local($i,$j);
  local($s) = &dot(@_[0..2], @_[0..2]);
  local(@trans, @dst);
  for($i = 0; $i < 3; $i++) {
    for($j = 0; $j < 3; $j++) {
        $dst[$i*4+$j] = $_[$j*4+$i] / $s;
    }
    $dst[$i*4+3] = 0;
  }
  @dst[12..15] = (0,0,0,1);
  @dst[12..14] = &vmmul( &svmul(-1, @_[12..14]),0, @dst );
  $dst[3*4+3] = 1;
  return @dst;
}

# lookat(from[3], to[3], upvector[3], roll[1])
# returns world-to-camera matrix which puts camera at "from"
# looking toward "to" with +Y aligned with "upvector"
# rolled counterclockwise by "roll".
sub lookat {
  local(@w2c);
  local(@from) = @_[0..2];
  local(@to) = @_[3..5];
  local(@up) = @_[6..8];
  local($roll) = $_[9];

  @from = (0,0,1) unless defined $from[2];
  @to = (0,0,0) unless defined $to[2];
  @up = (0,1,0) unless defined $up[2];
  @w2c = &m4( &basis(3, 2, &vsub(@from, @to), 1, @up) );
  @w2c = &tmul( &tfm('z', $roll), @w2c ) if $roll != 0;
  @w2c[12..14] = @from;
  @w2c;
}

sub dms2rad {
  &dms2d * $pi/180;
}

sub dms2d {
  local($leading) = $_[0];
  local($sign) = ($leading =~ s/^\s*-//) ? -1 : 1;
  $sign *  ($leading + ($_[1] + $_[2]/60)/60);
}

sub hms2d {
  &dms2d * 15;
}


sub rad2dms {
  local($d) = @_;
  local($sign) = $_[1] || " ";
  $sign = "-", $d = -$d if $d<0;
  $d *= 180/$pi;
  return sprintf("%s%02d:%04.1f", $sign, int($d), 60*($d - int($d)));
}

sub eqd2vec {
  local($ra, $dec, $r) = @_;	# Both RA and DEC in degrees!
  $r = 1 if $r eq "";
  $ra *= $pi/180;
  $dec *= $pi/180;
  local($cdec) = cos($dec);
  return ( $r*cos($ra)*$cdec, $r*sin($ra)*$cdec, $r*sin($dec) );
}


sub sg2eq {
  &eq2dms( &vm3mul( @_, @Tse ) );
}

sub eq2sg {
  &vm3mul( @_, @Tes );
}

sub radec2eqbasis {
  local($ra, $dec) = @_;
  $ra *= $pi/180;
  $dec *= $pi/180;
  		# vector to galaxy (equatorial coords)
  local(@z) = (cos($ra)*cos($dec), sin($ra)*cos($dec), sin($dec));
  # project @z out of (0,0,1)
  local(@x) = &normalize( -$z[0]*$z[2], -$z[1]*$z[2], 1 - $z[2]*$z[2] );
  local(@y) = &cross( @z, @x );
  (@x, @y, @z);
}

sub eq2dms {
  local($r, $rxy);
  local(@eq) = @_;
  local($ra, $dec);
  $rxy = sqrt($eq[0]*$eq[0] + $eq[1]*$eq[1]);
  $dec = atan2($eq[2], $rxy);
  $ra = atan2($eq[1], $eq[0]);
  $ra += 2*$pi if($ra < 0);
  return(&rad2dms($ra/15), &rad2dms($dec,"+"), sqrt(&dot(@eq,@eq)));
}

sub init_eq2gal {

  $pi = 3.14159265358979;

  # Both the following matrices are taken from SLALIB routines:
  # 
  # Each column of this matrix is a direction vector in the
  # J2000 equatorial system, expressed in (L2,B2) galactic coordinates.
  # Equivalently, each row is a galactic (L2,B2) direction vector
  # expressed in J2000 equatorial coordinates.
  #
  @Tge = (
	-0.054875539726,-0.873437108010,-0.483834985808,
	+0.494109453312,-0.444829589425,+0.746982251810,
	-0.867666135858,-0.198076386122,+0.455983795705);
  # 
  # Each column of this matrix is a direction vector in the (L2,B2)
  # *galactic* system, expressed in *supergalactic* coordinates.
  # Equivalently, each row is a supergalactic direction vector
  # expressed in (L2,B2) galactic coordinates.
  #
  @Tsg = (
	-0.735742574804,+0.677261296414,+0.000000000000,
	-0.074553778365,-0.080991471307,+0.993922590400,
	+0.673145302109,+0.731271165817,+0.110081262225);

  @Tse = &m3mmul(@Tsg,@Tge);
  @Tgs = &transpose(@Tsg);
  @Tes = &transpose(@Tse);
  @Teg = &transpose(@Tge);

  # C-galaxy coordinates = galactic(L2,B2) coordinates, negating X and Y.
  @Tcg = @Tgc = (-1,0,0, 0,-1,0, 0,0,1);
  @Tcs = &m3mmul( @Tcg, @Tgs );
  @Tsc = &m3mmul( @Tsg, @Tgc );
}


sub t2quat {
  local(@t) = (0+@_ == 16) ? @_ : &tfm(@_);

  local($s) = &mag( @t[0..2] );

# A rotation matrix is
#  ww+xx-yy-zz    2(xy-wz)  2(xz+wy)
#  2(xy+wz)    ww-xx+yy-zz  2(yz-wx)
#  2(xz-wy)       2(yz+wx)  ww-xx-yy+zz
  
  # ww+xx+yy+zz = ss
  local($ww,$xx,$yy,$zz);
  local($x,$y,$z,$w);
  $ww = ($s + $t[0*4+0] + $t[1*4+1] + $t[2*4+2]);	# 4 * w^2
  $xx = ($s + $t[0*4+0] - $t[1*4+1] - $t[2*4+2]);
  $yy = ($s - $t[0*4+0] + $t[1*4+1] - $t[2*4+2]);
  $zz = ($s - $t[0*4+0] - $t[1*4+1] + $t[2*4+2]);

  local($max) = $ww;
  $max = $xx if $max < $xx;
  $max = $yy if $max < $yy;
  $max = $zz if $max < $zz;

  if($ww == $max) {
    $w = sqrt($ww) * 2;			# 4w
    $x = ($t[2*4+1] - $t[1*4+2]) / $w;	# 4wx/4w
    $y = ($t[0*4+2] - $t[2*4+0]) / $w;	# 4wy/4w
    $z = ($t[1*4+0] - $t[0*4+1]) / $w;	# 4wz/4w
    $w *= .25;			# w

  } elsif($xx == $max) {
    $x = sqrt($xx) * 2;			# 4x
    $w = ($t[2*4+1] - $t[1*4+2]) / $x;	# 4wx/4x
    $y = ($t[1*4+0] + $t[0*4+1]) / $x;	# 4xy/4x
    $z = ($t[0*4+2] + $t[2*4+0]) / $x;	# 4xz/4x
    $x *= .25;			# x

  } elsif($yy == $max) {
    $y = sqrt($yy) * 2;			# 4y
    $w = ($t[0*4+2] - $t[2*4+0]) / $y;	# 4wy/4y
    $x = ($t[1*4+0] + $t[0*4+1]) / $y;	# 4xy/4y
    $z = ($t[2*4+1] + $t[1*4+2]) / $y;	# 4yz/4y
    $y *= .25;			# y

  } else {
    $z = sqrt($zz) * 2;			# 4z
    $w = ($t[1*4+0] - $t[0*4+1]) / $z;	# 4wz/4z
    $x = ($t[0*4+2] + $t[2*4+0]) / $z;	# 4xz/4z
    $y = ($t[2*4+1] + $t[1*4+2]) / $z;	# 4yz/4z
    $z *= .25;
  }

  $s = sqrt($s);
  (-$w/$s, $x/$s,$y/$s,$z/$s);
}

# @quat = &t2quat( transform )
# Convert 4x4 matrix into unit quaternion
sub old_t2quat {
    local(@t) = (0+@_ == 16) ? @_ : &tfm(@_);
    local(@v) = ($t[9]-$t[6], $t[2]-$t[8], $t[4]-$t[1]);
    local($scl) = &mag(@t[0..2]);
    local($trace) = $scl ? ($t[0]+$t[5]+$t[10])/$scl : 3; # 1 + 2 cos(angle)
    $trace = -1 if $trace < -1;
    $trace = 3 if $trace > 3;
    local($s) = sqrt(3 - $trace) / 2;			  # sin(angle/2)
    if($trace < -.25) {
	# Angle near pi; sin(angle) is small, so use cos-related mat elements
	local($c) = ($trace-1)/2;	# cos(angle)
	local($v) = 1-$c;		# versine(angle)
	local($i, $t);
	if($t[0] > -.5) {
	    $v[0] = sqrt(($t[0]-$c)/$v) * ($v[0]<0 ? -1 : 1);
	    $v[1] = ($t[1]+$t[4])/(2*$v*$v[0]);
	    $v[2] = ($t[2]+$t[8])/(2*$v*$v[0]);
	} elsif($t[5] > -.5) {
	    $v[1] = sqrt(($t[5]-$c)/$v) * ($v[1]<0 ? -1 : 1);
	    $v[0] = ($t[1]+$t[4])/(2*$v*$v[1]);
	    $v[2] = ($t[6]+$t[9])/(2*$v*$v[1]);
	} elsif($t[10] > $c) { # it should be > -.5 too, but just in case...
	    $v[2] = sqrt(($t[10]-$c)/$v) * ($v[2]<0 ? -1 : 1);
	    $v[0] = ($t[2]+$t[8])/(2*$v*$v[2]);
	    $v[1] = ($t[6]+$t[9])/(2*$v*$v[2]);
	}
    }
    local($v) = &mag(@v);
    $s /= -$v if $v>0;
    return ( sqrt(1 + $trace)/2, $v[0]*$s, $v[1]*$s, $v[2]*$s );
}

# @transform = &quat2t( quaternion )
# Turn quaternion into 4x4 matrix
sub quat2t {
    local(@q) = @_;
    local($u) = &mag;
    if(@_ == 3) {
	@q = ($u >= 1) ? ( 0, &svmul(1/$u, @_) ) : ( sqrt(1-$u*$u), @_ );
    } elsif($u != 1) {
	@q = &svmul(1/$u, @_);
    }
    local($x2, $xy, $xz, $xw, $y2, $yz, $yw, $z2, $zw);
    $x2 = $q[1]*$q[1]; $xy = $q[1]*$q[2]; $xz = $q[1]*$q[3]; $xw = $q[1]*$q[0];
    $y2 = $q[2]*$q[2]; $yz = $q[2]*$q[3]; $yw = $q[2]*$q[0];
    $z2 = $q[3]*$q[3]; $zw = $q[3]*$q[0];
    
    (
	1-2*($y2+$z2),	2*($xy+$zw),	2*($xz-$yw),	0,
	2*($xy-$zw),	1-2*($x2+$z2),	2*($yz+$xw),	0,
	2*($xz+$yw),	2*($yz-$xw),	1-2*($x2+$y2),	0,
	0,		0,		0,		1
    );
}

sub quat2t_junk {
    if(@_ == 3) {
	local($sinhalf) = &mag(@_);		# sin(angle/2)
	local($coshalf) = ($sinhalf>-1&&$sinhalf<1) ? sqrt(1 - $sinhalf*$sinhalf) : 0;
	return &tfm(&normalize(@_), 2 * atan2($sinhalf, $coshalf) * 180/$pi);
    }
    local(@v) = &normalize(@_[1..3]);  # ijk components
    local($angle) = 2 * atan2(sqrt(1-$_[0]*$_[0]), $_[0]); # 2 acos q.re
    return &tfm(@v, $angle*180/$pi);
}

# Quaternion to axis and angle(degrees), as taken by tfm: x,y,z, angle
sub quat2a {
    local(@q) = @_;
    local($u);
    if(@_ == 3) {
	$u = &mag;
	@q = ($u >= 1) ? ( 0, &svmul(1/$u, @_) ) : ( sqrt(1-$u*$u), @_ );
    }
    ( &normalize( @q[1..3] ), atan2( &mag(@q[1..3]), $q[0] ) * 360/$pi );
}


# Convert Euler angles -- in the order used by the CAVE,
#  Y(azim) then X(elev) then Z(roll), with Z closest to object coords --
# into a quaternion.
# Given our order convention, we multiply quat(roll) * quat(elev) * quat(azim).

sub aer2quat {
  local($az,$el,$ro) = @_;
  # sines and cosines of half-angles
  local($ca, $sa) = (cos($az*$pi/360), sin($az*$pi/360));  # azim: Y rot
  local($ce, $se) = (cos($el*$pi/360), sin($el*$pi/360));  # elev: X rot
  local($cr, $sr) = (cos($ro*$pi/360), sin($ro*$pi/360));  # roll: Z rot
  # quat(elev) * quat(azim)
  (@qelaz) = ( $ca*$ce, $ca*$se, $sa*$ce, -$sa*$se );

  #X# debug
  local(@result) = &quatmul( $cr,0,0,$sr, &quatmul( $ce,$se,0,0, $ca,0,$sa,0 ));
  local(@result2) = &quatmul( $cr,0,0,$sr, @qelaz );
  @debug = &vsub(@result, @result2);
  @result2;
}

sub m4 {
  return @_ if @_ == 16;
  ( @_[0..2], 0, @_[3..5], 0, @_[6..8], 0,  0,0,0,1 );
}

sub m3 {
  return @_ if @_ == 9;
  @_[0..2, 4..6, 8..10];
}

sub aer2t {
  &quat2t( &aer2quat( @_ ) );
}

sub t2aer {
  local(@M) = &m3(@_);
  local($rx,$ry,$rz);
  @M = &svmul( 1/&mag( @M[6..8] ), @M );
  local($sx) = -$M[2*3+1];
  local($cx) = ($sx<-1 || $sx>1) ? 0 : sqrt(1 - $sx*$sx);
  $rx = atan2( $sx, $cx ) * 180/$pi;
  if($cx < .001) {
    $ry = atan2( $M[1*3+0], $M[0*3+0] ) * 180/$pi;
    $ry = -$ry if $rx < 0;
    $rz = 0;
  } else {
    $ry = atan2( $M[2*3+0], $M[2*3+2] ) * 180/$pi;
    $rz = atan2( $M[0*0+1], $M[1*3+1] ) * 180/$pi;
  }
  ($ry, $rx, $rz);
}

  
# Convert quaternion to Euler angles 
sub quat2aer {
  local($w,$x,$y,$z);
  if(@_ == 3) {
    local($u) = &mag;
    ($w,$x,$y,$z) = $u>1 ? (0, &svmul(1/$u, @_)) : (sqrt(1-$u*$u), @_);
  } else {
    ($w,$x,$y,$z) = &normalize(@_);
  }
  local($srx) = 2*($x*$w - $y*$z);
  local($rx) = atan2( $srx, ($srx<-1||$srx>1) ? 0 : sqrt(1-$srx*$srx) );
  local($ry) = atan2( 2*($x*$z + $y*$w), 1 - 2*($x*$x + $y*$y) );
}

# @quataxb = &quatmul( @quata, @quatb )
# Quaternion multiplication
sub quatmul {
   ($_[0]*$_[4] - $_[1]*$_[5] - $_[2]*$_[6] - $_[3]*$_[7], # rr-ii-jj-kk
    $_[0]*$_[5] + $_[1]*$_[4] - $_[2]*$_[7] + $_[3]*$_[6], # ri+ir-jk+kj
    $_[0]*$_[6] + $_[2]*$_[4] - $_[3]*$_[5] + $_[1]*$_[7], # rj+jr-ki+ik
    $_[0]*$_[7] + $_[3]*$_[4] - $_[1]*$_[6] + $_[2]*$_[5]);# rk+kr-ij+ji
}

sub quatdiv {
   ($_[0]*$_[4] + $_[1]*$_[5] + $_[2]*$_[6] + $_[3]*$_[7], #  rr-ii-jj-kk
  - $_[0]*$_[5] + $_[1]*$_[4] + $_[2]*$_[7] - $_[3]*$_[6], # -ri+ir+jk-kj
  - $_[0]*$_[6] + $_[2]*$_[4] + $_[3]*$_[5] - $_[1]*$_[7], # -rj+jr+ki-ik
  - $_[0]*$_[7] + $_[3]*$_[4] + $_[1]*$_[6] - $_[2]*$_[5]);# -rk+kr+ij-ji
}

sub quatinv {
   (-$_[0], @_[1..3]);
}

# x y z rx ry rz (multiplied in the virdir order, rz*rx*ry*transl(x,y,z)) => T
sub vd2tfm {
  local(@vdwf) = @_;
  @vdwf = split(' ', $vdwf[0]) if(@vdwf == 1);
  if(@vdwf == 16) {
    return @vdwf;
  } elsif(@vdwf == 6 || @vdwf == 7) {
    return &tmul( &tfm('z', $vdwf[5]),
		  &tfm('x', $vdwf[3]),
		  &tfm('y', $vdwf[4]),
		  &tfm( @vdwf[0..2] ) );
  } else {
    print STDERR "$0: vd2tfm: expected either 6 numbers (x y z rx ry rz) or 16, not ``$tfm''\n";
    return &tfm(1);
  }
}

sub tfm2vd {
  local(@yxz) = &t2aer;
  (@_[12..14], @yxz[1,0,2]);
}

# &ax2quat( 'x'|'y'|'z', degrees )
%__ax2quat = ('x',0, 'y',1, 'z',2, 'X',0, 'Y',1, 'Z',2);
sub ax2quat {
  local($axis) = $_[0];
  $axis = $__ax2quat{$axis} if defined $__ax2quat{$axis};
  local($halfang) = $_[1] * $pi/360;
  local(@q) = (cos($halfang), 0,0,0);
  $q[$axis+1] = sin($halfang);
  @q;
}

sub vd2quat {
  local(@vdwf) = @_;
  @vdwf = split(' ', $vdwf[0]) if(@vdwf == 1);
  if(@vdwf == 16) {
    return &t2quat(@vdwf);
  }
  unshift(@vdwf, 0,0,0) if(@vdwf == 3);
  if(@vdwf == 6 || @vdwf == 7) {
    &quatmul( &ax2quat('z', $vdwf[5]),
	&quatmul( &ax2quat('x', $vdwf[3]),
		  &ax2quat('y', $vdwf[4]) ) );
  } else {
    print STDERR "$0: vd2quat: expected either 6 numbers (x y z rx ry rz) or 16, not ``", join(" ",@_), "''\n";
    return (1,0,0,0);
  }
}


# &qrotbtwn(x1,y1,z1, x2,y2,z2) constructs the quaternion which rotates
# vector x1,y1,z1 into x2,y2,z2
sub qrotbtwn {
    # Direction is (x2,y2,z2) cross (x1,y1,z1) 
    local(@ijk) = &normalize(&cross(@_));
    local($cost) = &dot(@_) / sqrt(&dot(@_[0..2,0..2]) * &dot(@_[3..5,3..5]));
    local($sinhalf) = -sqrt((1 - $cost) / 2);
    # magnitude of ijk is sin(angle/2)
    return ( sqrt((1+$cost)/2), $ijk[0]*$sinhalf, $ijk[1]*$sinhalf,
				$ijk[2]*$sinhalf );
}

# &puttfm( numbers ) prints an NxN transformation, N numbers per line
sub puttfm {
    local($n) = int(sqrt(@_));
    local($fmt) = join(" ", ("%10.7g") x $n) . "\n";
    while(@_) {
	printf $fmt, splice(@_, 0, $n);
    }
}

sub put {
    if(grep(/[^-+eE.\d]/, @_)) {
	print join(" ", @_), "\n";
	return;
    }
    local($n) = (0+@_);
    local(@data) = @_;
    grep($_ = ($_ < -$choplimit || $_ > $choplimit) ? $_ : 0, @data);

    if($n <= 2) {
	print join(" ", @_), "\n";
    } elsif($n <= 8) {
	printf "%10.7g " x $n . "\n", @_;
    } else {
	&puttfm(@data);
    }
}

sub pt {
    if(grep(/[^-+eE.\d]/, @_)) {
	print join(" ", @_), "\n";
    } else {
	while(@_) {
	    printf "%.11g%s", shift(@_), (@_>0?" ":"\n");
	}
    }
}


sub deg {
    $_[0] * 180/$pi;
}

sub rad {
    $_[0] * $pi/180;
}

sub tandeg {
    sin(&rad) / cos(&rad);
}

sub log10 {
    0.434294481903252 * log($_[0]);
}

# Minimum of a bunch of numbers
sub min {
    local($min) = $_[0];
    while($#_ >= 0) {
	shift;
	$min = $_[0] if $min > $_[0];
    }
    return $min;
}

# Maximum of a bunch of numbers
sub max {
    local($max) = $_[0];
    while($#_ >= 0) {
	shift;
	$max = $_[0] if $max < $_[0];
    }
    return $max;
}

sub dot {
    local($dot) = 0;
    local($len) = int(@_/2);
    local($i);
    for($i=0;$i<$len;$i++) {
	$dot += $_[$i] * $_[$i+$len];
    }
    $dot;
}

sub cross {
    return ($_[1]*$_[5] - $_[2]*$_[4],
	    $_[2]*$_[3] - $_[0]*$_[5],
	    $_[0]*$_[4] - $_[1]*$_[3]);
}

# Round to nearest multiple of 
sub round {
    local($_,$mod,$zero) = @_;
    $mod = 1 unless $mod;
    return $mod * int( ($_-$zero)/$mod + ($_ < $zero ? -.5 : .5) ) + $zero;
}

# Produce an orthonormal basis, given partial information.
# Input is the dimension and a list of row vectors:
#  d,
#   i, ai0,ai1,...,ai<d-1>,
#   j, aj0,aj1,...,aj<d-1>,
# ...
# Returns a d by d orthonormal matrix, with i'th row equal to ai0...ai<d-1>,
# etc.  Indices run from 0 to d-1 (not 1 to d).

sub basis {
    local($d) = shift;
    local(@done) = (0) x $d;
    local(@M, @T, @v, $j);
    # @M is the list of vectors assigned so far.
    # @T is the final output array, with members of @M
    # arranged in appropriate rows.
    # @done is an array with zeros for unassigned rows, ones elsewhere.
    for($done = 0; $done < $d; $done++) {
	if(@_) {
	    $row = shift;
	    @v = &normalize( splice(@_, 0, $d) );
	} else {
	    for($row = 0; $row < $d && $done[$row]; $row++) {
	    }
	    @v = (0) x $d;
	    $v[$row] = 1;
	}

	for($j = 0; $j < $d; $j++) {
	    # Orthogonalize against all preceding rows.
	    for($i = 0; $i < $#M; $i += $d) {
		$dot = &dot(@M[$i..$i+$d-1], @v);
		@v = &vsadd(-$dot, @M[$i..$i+$d-1], @v);
	    }
	    # Normalize
	    $dot = &dot(@v, @v);
	    last if $dot > .1;
	    # Recover from nearly-degenerate case.
	    # We perturb one coordinate and try again.
	    $v[($j+$row) % $d] += 1;
	} 
	@v = &svmul(1/sqrt($dot), @v);
	push(@M, @v);
	@T[$row*$d .. $row*$d+$d-1] = @v;
	$done[$row] = 1;
    }
    return @T;
}

# Transpose a square matrix.
sub transpose {
    local($d) = int(sqrt(@_));
    local($i, $j);
    local(@T);
    for($i = 0; $i < $d; $i++) {
	for($j = 0; $j < $d; $j++) {
	    push(@T, @_[$i + $j*$d]);
	}
    }
    return @T;
}

# Print a square matrix tidily.
sub putmatrix {
    local($d) = int(sqrt(@_));
    local($i);
    while($@ > 0) {
	printf " %9.6g", shift;
	print "\n" if ++$i % $d == 0;
    }
    print "\n" if $i % $d != 0;
}

sub list {
    local($_) = join(" ", @_);
    $_ =~ tr/,(){}[]/       /s;
    return split(' ', $_);
}

# Color conversion: out of place here, but useful
sub hls2rgb {
  local($h,$l,$s) = @_;
  local($max) = $l;
  local($delta) = $max*$s;
  local(@rgb) = ($max-$delta) x 3;
  $h -= int($h);
  $h += 1 if $h < 0;
  $h *= 6;
  local($t) = &abs($h-2)-1;
  if($t<0) { $rgb[0] = $max; }
  elsif($t<1) { $rgb[0] = $max-$delta*$t; }
  $t = &abs($h-4)-1;
  if($t<0) { $rgb[1] = $max; }
  elsif($t<1) { $rgb[1] = $max-$delta*$t; }
  $t = 2 - &abs(3-$h);
  if($t<0) { $rgb[2] = $max; }
  elsif($t<1) { $rgb[2] = $max-$delta*$t; }
  return @rgb;
}

# a [-1..1, -1..1] square onto a torus or Moebius strip.

# Uses global parameter $torus:
#       $torus = -1   rectangle
#       $torus = 0    cylinder
#       $torus = 1    torus
# and $r for the hole in the center of the torus.  Torus' major radius = 1.

$surfmap = "tormap" unless $surfmap;
sub tormap {
    local($v,$u) = @_;
    if($torus > 0) {
	local($rp) = $r + (1/$torus + cos($pi*$v)) / $pi;
	return ($rp * sin($pi*$u*$torus), sin($pi*$v)/$pi,
		$rp * cos($pi*$u*$torus) - $r - (1 + 1/$torus)/$pi );
    } elsif($torus > -1) {
	local($cyl) = $torus + 1;    # $cyl = 0 for square, 1 for cylinder
	if ($cylvert) { # vertical cylinder
	  return (sin($pi*$u*$cyl)/$pi/$cyl, $v,
		  (cos($pi*$u*$cyl) - 1)/$pi/$cyl);
	} else { # horizontal cylinder
	  return ($u, sin($pi*$v*$cyl)/$pi/$cyl,
		  (cos($pi*$v*$cyl) - 1)/$pi/$cyl );
	}
    } else {
	return ($u, $v, 0);
    }
}

sub imgfit {
    local($cen, $min, $max, $scale) = @_;
    if($max eq "") {
	print STDERR "Usage: imgfit(center, min, max [, scale])
returns min', max', (max'-min') -- range in which \"cen\" is centered, scaled up by \"scale\"\n";
	return;
    }
    $scale = 1 unless $scale;
    local($r) = $cen-$min;
    $r = $max-$cen if $r < $max-$cen;
    (($cen-$r)*$scale, ($cen+$r)*$scale, 2*$r*$scale);
}

sub history {
    local($howmany) = $_[$#_];
    $howmany = 0+@HIST unless $howmany>0;
    local($numbered) = (join("",@_) =~ /n/);
    local($i);
    for($i = @HIST-$howmany; $i < @HIST; $i++) {
	if($numbered) {
	    printf "%-3d %s\n", $i, $HIST[$i];
	} else {
	    printf " %s\n", $HIST[$i];
	}
    }
}

sub h {
    &history;
}

sub tfm_interact {
  # If we were invoked as a shell command, act as a perl calculator.
  local($tty) = (-t STDIN);
  print STDERR "Type \"help\" for help\n> " if $tty;