Skip to content
Snippets Groups Projects
Commit a27c8086 authored by Nattapon Jaroenchai's avatar Nattapon Jaroenchai
Browse files

add eval imagenet

parent bda43cda
Branches additional_input
No related tags found
1 merge request!1updated main for release
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import os
import shutil
import random
import numpy as np
import tensorflow as tf
from datetime import datetime
from keras import backend as K
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import segmentation_models as sm
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.layers import Input, Conv2D, RandomFlip, RandomRotation
from tensorflow.keras.optimizers import Adam, SGD, RMSprop
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau, TensorBoard
from unet_util import dice_coef_loss, dice_coef, jacard_coef, dice_coef_loss, Residual_CNN_block, multiplication, attention_up_and_concatenate, multiplication2, attention_up_and_concatenate2, UNET_224, evaluate_prediction_result
################################################################
################# Load Validation Data #########################
################################################################
def load_img(filename, map_dir, legend_dir, seg_dir):
mapName = tf.strings.join([map_dir, filename[0]], separator='/')
legendName = tf.strings.join([legend_dir, filename[1]], separator='/')
map_img = tf.io.read_file(mapName)
map_img = tf.cast(tf.io.decode_png(map_img), dtype=tf.float32) / 255.0
legend_img = tf.io.read_file(legendName)
legend_img = tf.cast(tf.io.decode_png(legend_img), dtype=tf.float32) / 255.0
map_img = tf.concat(axis=2, values=[map_img, legend_img])
map_img = map_img*2.0 - 1.0
map_img = tf.image.resize(map_img, [256, 256])
segName = tf.strings.join([seg_dir, filename[0]], separator='/')
seg_img = tf.io.read_file(segName)
seg_img = tf.io.decode_png(seg_img)
seg_img = tf.image.resize(seg_img, [256, 256])
return map_img, seg_img
def load_validation_img(filename):
return load_img(filename,
'/projects/bbym/shared/all_patched_data/validation/poly/map_patches',
'/projects/bbym/shared/all_patched_data/validation/poly/legend',
'/projects/bbym/shared/all_patched_data/validation/poly/seg_patches')
validate_map_file = os.listdir('/projects/bbym/shared/all_patched_data/validation/poly/map_patches')
# Pre-filter map files based on existence of corresponding legend files
validate_map_legend_names = [(x, '_'.join(x.split('_')[0:-2])+'.png')
for x in validate_map_file
if os.path.exists(os.path.join('/projects/bbym/shared/all_patched_data/validation/poly/legend',
'_'.join(x.split('_')[0:-2])+'.png'))]
validate_dataset = tf.data.Dataset.from_tensor_slices(validate_map_legend_names)
validate_dataset = validate_dataset.map(load_validation_img)
validate_dataset = validate_dataset.batch(50)
print("Load Data Done!")
################################################################
##### Prepare the model configurations #########################
################################################################
name_id = 'unproecessed_legends' #You can change the id for each run so that all models and stats are saved separately.
input_data = './samples/'
prediction_path = './predicts_'+name_id+'/'
log_path = './logs_'+name_id+'/'
model_path = './models_'+name_id+'/'
save_model_path = './models_'+name_id+'/'
# Create the folder if it does not exist
os.makedirs(input_data, exist_ok=True)
os.makedirs(model_path, exist_ok=True)
os.makedirs(prediction_path, exist_ok=True)
# Avaiable backbones for Unet architechture
# 'vgg16' 'vgg19' 'resnet18' 'resnet34' 'resnet50' 'resnet101' 'resnet152' 'inceptionv3'
# 'inceptionresnetv2' 'densenet121' 'densenet169' 'densenet201' 'seresnet18' 'seresnet34'
# 'seresnet50' 'seresnet101' 'seresnet152', and 'attentionUnet'
backend = 'resnet50'
name = 'Unet-'+ backend
finetune = False
if (finetune): name += "_ft"
logdir = log_path + name
if(os.path.isdir(logdir)):
shutil.rmtree(logdir)
os.makedirs(logdir, exist_ok=True)
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=logdir)
print('model location: '+ model_path+name+'.h5')
# Load the best model saved by the callback module
if(backend != "attentionUnet"):
model = load_model(model_path+name+'.h5',
custom_objects={'dice_coef_loss':dice_coef_loss,
'dice_coef':dice_coef,})
else:
model = load_model(model_path+name+'.h5',
custom_objects={'multiplication': multiplication,
'multiplication2': multiplication2,
'dice_coef_loss':dice_coef_loss,
'dice_coef':dice_coef,})
print("Load Model Done!")
def f1_score(y_true, y_pred): # Dice coefficient
smooth = 1.
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
model.compile(optimizer = Adam(),
loss = dice_coef_loss,
metrics=[dice_coef,'accuracy', f1_score])
eval_results = model.evaluate(validate_dataset, verbose=1)
print(eval_results)
# print(f'Validation F1 score: {f1}')
# If validate_dataset is a tf.data.Dataset instance
def plotResult(fileName, save_dir):
test_dataset = tf.data.Dataset.from_tensor_slices([fileName])
test_dataset = test_dataset.map(load_validation_img)
test_dataset = test_dataset.batch(1)
# Extracting and visualizing the first image from the first batch
for batch in test_dataset.take(1): # Taking one batch from the dataset
input_test = batch[0] # Extracting the first image from the batch
print(input_test.shape)
predicted = model.predict(test_dataset)
print(predicted.shape)
# Thresholding the predicted result to get binary values
threshold = 0.5 # you can adjust this value based on your requirement
predicted_binary = (predicted > threshold).astype(np.uint8) # convert boolean to integer (1 or 0)
mapName = '/projects/bbym/shared/all_patched_data/validation/poly/map_patches/' + fileName[0]
segName = '/projects/bbym/shared/all_patched_data/validation/poly/seg_patches/' + fileName[0]
legendName = '/projects/bbym/shared/all_patched_data/validation/poly/legend/' + fileName[1]
# legendName = '/projects/bbym/nathanj/validation/legend/' + fileName[1]
map_img = mpimg.imread(mapName)
seg_img = mpimg.imread(segName)
label_img = mpimg.imread(legendName)
# Set the figure size
plt.figure(figsize=(10, 2))
# Plot map image
plt.subplot(1, 5, 1)
plt.title("map")
plt.imshow(input_test[0,:,:,:3])
# Plot legend image
plt.subplot(1, 5, 2)
plt.title("legend")
plt.imshow(input_test[0,:,:,3:])
# Plot true segmentation image
plt.subplot(1, 5, 3)
plt.title("true segmentation")
plt.imshow(seg_img, cmap='gray')
# Plot predicted segmentation image
plt.subplot(1, 5, 4)
plt.title("predicted segmentation")
plt.imshow(predicted_binary[0, :, :, 0]*255, cmap='gray')
# Plot error image
plt.subplot(1, 5, 5)
plt.title("error")
# Normalize both images to the range [0, 1] if they aren't already
seg_img_normalized = seg_img / 255.0 if seg_img.max() > 1 else seg_img
predicted_normalized = predicted_binary[0, :, :, 0] if predicted_binary.max() <= 1 else predicted_binary[0, :, :, 0] / 255.0
# Calculate the error image
# error_img = seg_img_normalized - predicted_normalized # simple difference
error_img = np.logical_xor(predicted_binary[0, :, :, 0], seg_img)
# Alternatively, for absolute difference:
# error_img = np.abs(seg_img_normalized - predicted_normalized)
# Display the error image
cax = plt.imshow(error_img, cmap='gray')
# Set the color scale limits if necessary
# cax.set_clim(vmin=-1, vmax=1) # adjust as needed
# # Add color bar to help interpret the error image
# cbar = plt.colorbar(cax, orientation='vertical', shrink=0.75)
# cbar.set_label('Error Magnitude', rotation=270, labelpad=15)
# Save the entire figure
plt.savefig(prediction_path + fileName[0] + '.png')
# Close the figure to release resources
plt.close()
n=20
for fileName in random.sample(validate_map_legend_names, n):
print(fileName)
plotResult(fileName, prediction_path)
print("Save Images Done!")
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment