Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import os
import shutil
import random
import numpy as np
import tensorflow as tf
from datetime import datetime
from keras import backend as K
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import segmentation_models as sm
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.layers import Input, Conv2D, RandomFlip, RandomRotation
from tensorflow.keras.optimizers import Adam, SGD, RMSprop
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau, TensorBoard
from unet_util import dice_coef_loss, dice_coef, jacard_coef, dice_coef_loss, Residual_CNN_block, multiplication, attention_up_and_concatenate, multiplication2, attention_up_and_concatenate2, UNET_224, evaluate_prediction_result
################################################################
################# Load Validation Data #########################
################################################################
def load_img(filename, map_dir, legend_dir, seg_dir):
mapName = tf.strings.join([map_dir, filename[0]], separator='/')
legendName = tf.strings.join([legend_dir, filename[1]], separator='/')
map_img = tf.io.read_file(mapName)
map_img = tf.cast(tf.io.decode_png(map_img), dtype=tf.float32) / 255.0
legend_img = tf.io.read_file(legendName)
legend_img = tf.cast(tf.io.decode_png(legend_img), dtype=tf.float32) / 255.0
map_img = tf.concat(axis=2, values=[map_img, legend_img])
map_img = map_img*2.0 - 1.0
map_img = tf.image.resize(map_img, [256, 256])
segName = tf.strings.join([seg_dir, filename[0]], separator='/')
seg_img = tf.io.read_file(segName)
seg_img = tf.io.decode_png(seg_img)
seg_img = tf.image.resize(seg_img, [256, 256])
return map_img, seg_img
def load_validation_img(filename):
return load_img(filename,
'/projects/bbym/shared/all_patched_data/validation/poly/map_patches',
'/projects/bbym/shared/all_patched_data/validation/poly/legend',
'/projects/bbym/shared/all_patched_data/validation/poly/seg_patches')
validate_map_file = os.listdir('/projects/bbym/shared/all_patched_data/validation/poly/map_patches')
# Pre-filter map files based on existence of corresponding legend files
validate_map_legend_names = [(x, '_'.join(x.split('_')[0:-2])+'.png')
for x in validate_map_file
if os.path.exists(os.path.join('/projects/bbym/shared/all_patched_data/validation/poly/legend',
'_'.join(x.split('_')[0:-2])+'.png'))]
validate_dataset = tf.data.Dataset.from_tensor_slices(validate_map_legend_names)
validate_dataset = validate_dataset.map(load_validation_img)
validate_dataset = validate_dataset.batch(50)
print("Load Data Done!")
################################################################
##### Prepare the model configurations #########################
################################################################
name_id = 'unproecessed_legends' #You can change the id for each run so that all models and stats are saved separately.
input_data = './samples/'
prediction_path = './predicts_'+name_id+'/'
log_path = './logs_'+name_id+'/'
model_path = './models_'+name_id+'/'
save_model_path = './models_'+name_id+'/'
# Create the folder if it does not exist
os.makedirs(input_data, exist_ok=True)
os.makedirs(model_path, exist_ok=True)
os.makedirs(prediction_path, exist_ok=True)
# Avaiable backbones for Unet architechture
# 'vgg16' 'vgg19' 'resnet18' 'resnet34' 'resnet50' 'resnet101' 'resnet152' 'inceptionv3'
# 'inceptionresnetv2' 'densenet121' 'densenet169' 'densenet201' 'seresnet18' 'seresnet34'
# 'seresnet50' 'seresnet101' 'seresnet152', and 'attentionUnet'
backend = 'resnet50'
name = 'Unet-'+ backend
finetune = False
if (finetune): name += "_ft"
logdir = log_path + name
if(os.path.isdir(logdir)):
shutil.rmtree(logdir)
os.makedirs(logdir, exist_ok=True)
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=logdir)
print('model location: '+ model_path+name+'.h5')
# Load the best model saved by the callback module
if(backend != "attentionUnet"):
model = load_model(model_path+name+'.h5',
custom_objects={'dice_coef_loss':dice_coef_loss,
'dice_coef':dice_coef,})
else:
model = load_model(model_path+name+'.h5',
custom_objects={'multiplication': multiplication,
'multiplication2': multiplication2,
'dice_coef_loss':dice_coef_loss,
'dice_coef':dice_coef,})
print("Load Model Done!")
def f1_score(y_true, y_pred): # Dice coefficient
smooth = 1.
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
model.compile(optimizer = Adam(),
loss = dice_coef_loss,
metrics=[dice_coef,'accuracy', f1_score])
eval_results = model.evaluate(validate_dataset, verbose=1)
print(eval_results)
# print(f'Validation F1 score: {f1}')
# If validate_dataset is a tf.data.Dataset instance
def plotResult(fileName, save_dir):
test_dataset = tf.data.Dataset.from_tensor_slices([fileName])
test_dataset = test_dataset.map(load_validation_img)
test_dataset = test_dataset.batch(1)
# Extracting and visualizing the first image from the first batch
for batch in test_dataset.take(1): # Taking one batch from the dataset
input_test = batch[0] # Extracting the first image from the batch
print(input_test.shape)
predicted = model.predict(test_dataset)
print(predicted.shape)
# Thresholding the predicted result to get binary values
threshold = 0.5 # you can adjust this value based on your requirement
predicted_binary = (predicted > threshold).astype(np.uint8) # convert boolean to integer (1 or 0)
mapName = '/projects/bbym/shared/all_patched_data/validation/poly/map_patches/' + fileName[0]
segName = '/projects/bbym/shared/all_patched_data/validation/poly/seg_patches/' + fileName[0]
legendName = '/projects/bbym/shared/all_patched_data/validation/poly/legend/' + fileName[1]
# legendName = '/projects/bbym/nathanj/validation/legend/' + fileName[1]
map_img = mpimg.imread(mapName)
seg_img = mpimg.imread(segName)
label_img = mpimg.imread(legendName)
# Set the figure size
plt.figure(figsize=(10, 2))
# Plot map image
plt.subplot(1, 5, 1)
plt.title("map")
plt.imshow(input_test[0,:,:,:3])
# Plot legend image
plt.subplot(1, 5, 2)
plt.title("legend")
plt.imshow(input_test[0,:,:,3:])
# Plot true segmentation image
plt.subplot(1, 5, 3)
plt.title("true segmentation")
plt.imshow(seg_img, cmap='gray')
# Plot predicted segmentation image
plt.subplot(1, 5, 4)
plt.title("predicted segmentation")
plt.imshow(predicted_binary[0, :, :, 0]*255, cmap='gray')
# Plot error image
plt.subplot(1, 5, 5)
plt.title("error")
# Normalize both images to the range [0, 1] if they aren't already
seg_img_normalized = seg_img / 255.0 if seg_img.max() > 1 else seg_img
predicted_normalized = predicted_binary[0, :, :, 0] if predicted_binary.max() <= 1 else predicted_binary[0, :, :, 0] / 255.0
# Calculate the error image
# error_img = seg_img_normalized - predicted_normalized # simple difference
error_img = np.logical_xor(predicted_binary[0, :, :, 0], seg_img)
# Alternatively, for absolute difference:
# error_img = np.abs(seg_img_normalized - predicted_normalized)
# Display the error image
cax = plt.imshow(error_img, cmap='gray')
# Set the color scale limits if necessary
# cax.set_clim(vmin=-1, vmax=1) # adjust as needed
# # Add color bar to help interpret the error image
# cbar = plt.colorbar(cax, orientation='vertical', shrink=0.75)
# cbar.set_label('Error Magnitude', rotation=270, labelpad=15)
# Save the entire figure
plt.savefig(prediction_path + fileName[0] + '.png')
# Close the figure to release resources
plt.close()
n=20
for fileName in random.sample(validate_map_legend_names, n):
filenames.append(fileName)
# print(fileName)
plotResult(fileName, prediction_path)
print("Save Images Done!")