Newer
Older
/*
* Network server offering particle snapshots of kira/Starlab data
* (www.manybody.org).
*
* Stuart Levy, slevy@ncsa.uiuc.edu
* National Center for Supercomputing Applications,
* University of Illinois 2001.
*/
/*
* $Log$
* Revision 1.8 2002/04/23 03:21:22 slevy
* Add rgb565 blackbody-color encoding from Mitchell Charity's code.
*
* Revision 1.7 2002/04/22 23:16:50 slevy
* Ignore SIGPIPEs in case the caller disconnects early.
* Accept T=<scalefactor> as well as T=<16 numbers>.
* Report density center both in original and transformed coords.
*
* Revision 1.6 2002/04/17 20:46:07 slevy
* Pass out just the leaf nodes (stars), ignore center-of-mass nodes.
*
* Revision 1.5 2002/04/17 15:51:11 slevy
* Print starlab-computed density-center position too.
* isalpha for Irix 6.5 back-compat.
*
* Revision 1.4 2002/04/16 19:10:45 slevy
* Don't use curstate.T0 unless it's initialized!
*
* Revision 1.3 2002/04/16 18:54:33 slevy
* Hack around inconsisent prototypes for accept().
* Return more complete information -- transform etc. -- when
* asked for neither speck nor sdb data.
*
* Revision 1.2 2002/04/16 15:25:34 slevy
* Mollify gcc under Linux: sockaddr, etc.
*
* Revision 1.1 2002/04/16 15:17:01 slevy
* Simple network server to cough up a list of particles at a given time.
*
*/
#ifdef NEWSTDIO
#include <ostream.h>
#include <istream.h>
#endif /*NEWSTDIO*/
#include <stdio.h>
#include <stdarg.h>
#include "worldline.h"
#include "shmem.h"
#include "findfile.h"
#include "specks.h"
#include "kira_parti.h"
#include "stardef.h"
#include <unistd.h>
#include <getopt.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <errno.h>
#include <ctype.h>
#undef isdigit /* irix 6.5 back-compat hack */
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
static char local_id[] = "$Id$";
extern struct specklist *kira_get_parti( struct stuff *st, double realtime );
void msg( CONST char *fmt, ... );
typedef worldbundle *worldbundleptr;
enum speckfields {
SPECK_ID = 0, // worldline index (= kira index for single stars,
// unique small negative int for others)
SPECK_MASS = 1, // mass/Msun
SPECK_NCLUMP = 2, // number of stars in clump
SPECK_TLOG = 3, // log10(Teff)
SPECK_LUM = 4, // L/Lsun?
SPECK_STYPE = 5, // star type: 1ms 2cd 3gs 4bh 5sg 6hb
SPECK_ISMEMBER = 6, // is member of cluster?
SPECK_ROOTID = 7, // worldline index of root of clump
SPECK_TREEADDR = 8, // bit-encoded tree address within our clump (0 for isolated stars)
SPECK_RINGSIZE = 9, // size of ring marker
SPECK_SQRTMASS = 10, // square root of mass, for handy brightness factor
SPECK_MU = 11, // mass ratio; = 0 for leaf nodes
SPECK_SEPVEC = 12, // separation vector[3]
SPECK_NDATAFIELDS = 15
};
static char *fieldnames[] = { // Must match ``enum speckfields'' !!
"id", // worldline index (=? kira index for singles), unique <0 for others
"mass", // log10(mass/Msun)
"nclump", // number of stars in clump, = 1 for singles
"Tlog", // log10( Teff )
"Lum", // L/Lsun?
"stype", // stellar type index
"ismember", // is member of cluster? (0/1)
"rootid", // id of root of clump, = our id for singles
"treeaddr", // binary-coded address in clump
"ringsize", // size of ring
"sqrtmass", // sqrt(mass/Msun)
"mu", // mass ratio for nonleaf nodes
NULL
};
struct vald {
float min, max, sum;
};
struct trailhead {
int maxtrail, ntrails;
int next; /* ring buffer next-slot-to-use */
real lasttime;
struct speck *specks;
};
struct worldstuff {
int nh, maxnh;
worldbundleptr *wh;
ifstream *ins;
int ih; // current worldbundle index
real tmin, tmax;
real tcur; // current time
real treq; // requested time
int readflags; // KIRA_VERBOSE | KIRA_READLATER
int treenodes; // KIRA_{OFF|ON|ROOTS}
int treerings; // KIRA_{OFF|ON|ROOTS}
int treearcs; // KIRA_{OFF|ON|CROSS|TICK}
float tickscale; // size of treearc cross mark (frac of sep)
int ringsizer; // KIRA_RINGSEP, KIRA_RINGA
float ringscale; // multiplier for above
float ringmin, ringmax; // range of pixel sizes for ring markers
int tracking, wastracking; // id of particle we're tracking, or zero
Point trackpos; // last known position of tracked particle
float massscale; // scale-factor for masses (conv to Msun)
int truemassscale; // Did massscale come from kira itself?
int maxstars, maxmarks; // room allocated for each
int maxleaves;
struct specklist *sl;
struct specklist *marksl;
int slvalid;
struct specklist *bufsl[2], *bufmarksl[2]; // double-buffers
int bufno;
vector center_pos;
vector center_vel;
int centered;
int which_center;
int myselseq; // sequence number of ww->sel
int nleafsel;
SelMask *bufleafsel[2];
// selection mapping
SelOp intsrc; // for all particles matching intsrc,
SelOp intdest; // then turn on intdest bit(s).
struct trailhead *trails; // per-star specklist of recent history
int maxtrail;
int maxtrailno;
SelOp trailsel;
float trailalpha;
float trailpsize;
int trailonly;
real maxtrailgap;
SelOp picksel; // what to do when a star is picked
struct speck *marksp; // current pointer, updated by add_speck
int leafcount; // temp, used in recursion only
int interactsel, unionsel; // ditto
int pickcount; // temp, used in kira_picked
SelMask *leafsel;
struct vald vd[SPECK_NDATAFIELDS];
double curtime;
worldstuff( struct stuff *st ) {
this->init( st );
}
void init( struct stuff *st ) {
nh = 0;
wh = NULL;
ih = 0;
tmin = 0, tmax = 1;
tcur = treq = 0;
treenodes = KIRA_ON;
treerings = KIRA_OFF;
treearcs = KIRA_ON;
ringsizer = KIRA_RINGA;
ringscale = 1.5;
massscale = 1.0;
truemassscale = 0;
ringmin = 2;
ringmax = 50;
tickscale = 0.25;
tracking = wastracking = 0;
centered = 0; /* NOT auto-centered by default! */
which_center = 0;
center_pos[0] = center_pos[1] = center_pos[2] = 0;
center_vel[0] = center_vel[1] = center_vel[2] = 0;
sl = marksl = NULL;
bufsl[0] = bufsl[1] = NULL;
bufmarksl[0] = bufmarksl[1] = NULL;
bufno = 0;
maxstars = maxmarks = 0;
slvalid = 0;
trails = NULL;
maxtrail = 50;
maxtrailno = 0;
trailonly = 0;
trailalpha = 0.6;
trailpsize = 1.0;
maxtrailgap = 0.1;
marksp = NULL;
leafcount = 0;
myselseq = 0;
leafsel = NULL;
bufleafsel[0] = bufleafsel[1] = NULL;
nleafsel = 0;
}
};
void kira_invalidate( struct dyndata *dd, struct stuff *st ) {
if(st->sl) st->sl->used = -1000000;
worldstuff *ww = (worldstuff *)(dd->data);
if(ww) ww->slvalid = 0;
}
int kira_read( struct stuff **stp, int argc, char *argv[], char *fname, void * ) {
if(argc < 1 || strcmp(argv[0], "kira") != 0)
return 0;
struct stuff *st = *stp;
char *realfile = findfile(fname, argv[1]);
kira_open( &st->dyn, st, realfile ? realfile : argv[1], argc>2 ? atoi(argv[2]) : 0 );
return 1;
}
int kira_set( struct dyndata *dd, struct stuff *st, int what, double val )
{
struct worldstuff *ww = (struct worldstuff *)dd->data;
if(ww == NULL) return 0;
if(kira_get(dd, st, what) == val)
return 2;
switch(what) {
case KIRA_NODES: ww->treenodes = (int)val; break;
case KIRA_RINGS: ww->treerings = (int)val; break;
case KIRA_TREE: ww->treearcs = (int)val; break;
case KIRA_TICKSCALE: ww->tickscale = val; break;
case KIRA_RINGSIZE: ww->ringsizer = (int)val; break;
case KIRA_RINGSCALE: ww->ringscale = val; break;
case KIRA_RINGMIN: ww->ringmin = val; break;
case KIRA_RINGMAX: ww->ringmax = val; break;
case KIRA_TRACK: if(ww->tracking != (int)val) ww->wastracking = 0;
ww->tracking = (int)val; break;
default: return 0;
}
kira_invalidate( dd, st );
return 1;
}
double kira_get( struct dyndata *dd, struct stuff *st, int what )
{
struct worldstuff *ww = (struct worldstuff *)dd->data;
if(ww == NULL) return 0;
switch(what) {
case KIRA_NODES: return ww->treenodes;
case KIRA_RINGS: return ww->treerings;
case KIRA_TREE: return ww->treearcs;
case KIRA_TICKSCALE: return ww->tickscale;
case KIRA_RINGSIZE: return ww->ringsizer;
case KIRA_RINGSCALE: return ww->ringscale;
case KIRA_RINGMIN: return ww->ringmin;
case KIRA_RINGMAX: return ww->ringmax;
case KIRA_TRACK: return ww->tracking;
}
return 0;
}
int kira_get_center( Point *p, struct dyndata *dd, struct stuff *st ) {
worldstuff *ww = (worldstuff *)dd->data;
p->x[0] = ww->center_pos[0];
p->x[1] = ww->center_pos[1];
p->x[2] = ww->center_pos[2];
return ww->which_center;
}
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
int hasdata( ifstream *s, double maxwait ) {
#ifdef NEWSTDIO
return 1;
#else /*old stdio, where filebuf::fd() still existed*/
struct timeval tv;
fd_set fds;
if(s == NULL) return 0;
if(s->rdbuf()->in_avail() || s->eof()) return 1;
if(maxwait < 0) maxwait = 0;
tv.tv_sec = (int)maxwait;
tv.tv_usec = (int) (1000000 * (maxwait - tv.tv_sec));
FD_ZERO(&fds);
FD_SET(s->rdbuf()->fd(), &fds);
return(select(s->rdbuf()->fd() + 1, &fds, NULL, NULL, &tv) > 0);
#endif
}
int kira_help( struct dyndata *dd, struct stuff *st, int verbose )
{
msg(" kira {node|ring|size|scale|span|track|trail} starlab controls; try \"kira ?\"");
return 1;
}
int kira_read_more( struct dyndata *dd, struct stuff *st, int nmax, double tmax, double realdtmax )
{
struct worldstuff *ww = (struct worldstuff *)dd->data;
if(ww == NULL) return -1;
ifstream *ins = ww->ins;
if(ins == NULL || !ins->rdbuf()->is_open()) return -1;
int paras = 0;
while( paras < nmax && (ww->nh == 0 || ww->wh[ww->nh-1]->get_t_max() < tmax) ) {
if(ww->nh >= ww->maxnh) {
ww->maxnh = (ww->nh > ww->maxnh*2) ? ww->nh + 1 : ww->maxnh*2;
ww->wh = RenewN( ww->wh, worldbundleptr, ww->maxnh );
}
worldbundle *wb;
wb = read_bundle(*ins, ww->readflags & KIRA_VERBOSE);
if(wb == NULL) {
ins->close();
if(paras == 0) paras = -1;
break;
}
ww->wh[ww->nh++] = wb;
paras++;
}
if(paras > 0) {
ww->tmin = ww->wh[0]->get_t_min();
ww->tmax = ww->wh[ww->nh-1]->get_t_max();
}
return paras;
}
int kira_get_trange( struct dyndata *dd, struct stuff *st, double *tminp, double *tmaxp )
{
struct worldstuff *ww = (struct worldstuff *)dd->data;
if(ww == NULL) {
*tminp = *tmaxp = 0;
return 0;
}
*tminp = ww->tmin;
*tmaxp = ww->tmax;
return 1;
}
int kira_open( struct dyndata *dd, struct stuff *st, char *filename, int readflags)
{
// If data field names aren't already assigned, set them now.
for(int i = 0; fieldnames[i] != NULL; i++) {
if(st->vdesc[st->curdata][i].name[0] == '\0')
strcpy(st->vdesc[st->curdata][i].name, fieldnames[i]);
}
if(filename == NULL || !strcmp(filename, "-init")) {
return 0; // "kira -init" sets up datafield names w/o complaint
}
ifstream *ins = new ifstream(filename);
if (!ins || !*ins) {
msg("Kira/starlab data file %s not found.", filename);
delete ins;
return 0;
}
struct worldstuff *ww = NewN( worldstuff, 1 ); // from shmem -- avoid "new"
ww->init( st );
ww->maxnh = 1024;
ww->wh = NewN( worldbundleptr, ww->maxnh );
ww->ins = ins;
ww->tmin = ww->tmax = 0;
ww->tcur = ww->treq = -1.0; /* invalidate */
ww->readflags = readflags;
memset( dd, 0, sizeof(*dd) );
dd->data = ww;
dd->getspecks = kira_get_parti;
dd->trange = kira_get_trange;
dd->ctlcmd = NULL; /*kira_parse_args;*/
dd->draw = NULL; /*kira_draw;*/
dd->help = kira_help;
dd->free = NULL; /* XXX create a 'free' function someday */
dd->enabled = 1;
ww->nh = 0;
if(! (readflags & KIRA_READLATER)) {
kira_read_more( dd, st, ww->maxnh, 1e38, 1e38 );
if (ww->nh == 0) {
msg("Data file %s not in worldbundle format.", filename);
dd->enabled = 0;
return 0;
}
preload_pdyn(ww->wh, ww->nh, false);
}
float mscale = mass_scale_factor();
if(mscale > 0) {
ww->massscale = mscale;
ww->truemassscale = 1;
}
ww->ih = 0;
ww->sl = NULL;
return 1;
}
static float log10_of( float v ) {
return v <= 0 ? 0 : log10f( v );
}
static float netTL( pdyn *b, float *totlum ) { // temp-weighted lum
if(b == NULL) return 0;
if(b->is_leaf()) {
*totlum += b->get_luminosity();
return b->get_temperature() * b->get_luminosity();
}
float totTL = 0;
for_all_daughters(pdyn, b, bb)
totTL += netTL( bb, totlum );
return totTL;
}
speck *add_speck(pdyn *b, pdyn *top, int addr, speck *sp, specklist *sl, worldstuff *ww)
{
sp->p.x[0] = b->get_pos()[0];
sp->p.x[1] = b->get_pos()[1];
sp->p.x[2] = b->get_pos()[2];
if(ww->centered) {
sp->p.x[0] -= ww->center_pos[0];
sp->p.x[1] -= ww->center_pos[1];
sp->p.x[2] -= ww->center_pos[2];
}
int id = b->get_index();
if(b->is_leaf()) {
if(id < ww->nleafsel) {
ww->unionsel |= ww->leafsel[id];
if(SELECTED(ww->leafsel[id], &ww->intsrc))
ww->interactsel = ww->intdest.wanton;
}
sp->val[SPECK_ID] = id;
sp->val[SPECK_TLOG] = log10_of( b->get_temperature() );
sp->val[SPECK_LUM] = b->get_luminosity();
} else {
id = -b->get_worldline_index();
if(id >= 0 || id + ww->maxstars < ww->maxleaves) {
static int yikes = 1;
if(yikes++ % 256 == 0) printf("OOPS: worldline_index %d not in range 1..%d\n",
-id, 2*ww->maxleaves);
} else {
int slotno = ww->maxstars + id;
ww->unionsel |= ww->leafsel[slotno];
}
sp->val[SPECK_ID] = id; // distinguish CM nodes
float totL = 0, totTL;
totTL = netTL( b, &totL );
sp->val[SPECK_LUM] = totL;
sp->val[SPECK_TLOG] = log10_of( totL == 0 ? 0 : totTL / totL );
}
sp->val[SPECK_MASS] = b->get_mass() * ww->massscale;
sp->val[SPECK_SQRTMASS] = sqrtf( sp->val[SPECK_MASS] );
sp->val[SPECK_STYPE] = b->get_stellar_type(); /* see starlab/inc/star_support.h */
sp->val[SPECK_ISMEMBER] = is_member( ww->wh[ww->ih], b );
sp->val[SPECK_NCLUMP] = 0; // complete (add n_leaves) in kira_to_parti
sp->val[SPECK_ROOTID] = (top->is_leaf())
? top->get_index()
: -top->get_worldline_index();
// Addr is 0 for top-level leaf, 1 for top-level CM,
// constructed from parent addr otherwise.
sp->val[SPECK_TREEADDR] = addr;
sp->val[SPECK_RINGSIZE] = 0;
sl->nspecks++;
sp = NextSpeck(sp, sl, 1);
return sp;
}
speck *assign_specks(pdyn *b, pdyn *top, int addr, speck *sp, specklist *sl, worldstuff *ww)
{
// Convert relative coordinates to absolute.
vector oldpos = b->get_pos();
if (b != top)
b->inc_pos(b->get_parent()->get_pos());
if(b->is_leaf()
|| ww->treenodes == KIRA_ON
|| (ww->treenodes == KIRA_ROOTS && b == top)) {
sp = add_speck(b, top, addr, sp, sl, ww);
if(b->is_leaf())
ww->leafcount++;
}
if(!b->is_leaf() &&
(ww->treerings == KIRA_ON || ww->treearcs != KIRA_OFF
|| (ww->treerings == KIRA_ROOTS && b == top))) {
struct speck *marksp = ww->marksp;
ww->marksp = add_speck(b, top, addr, marksp, ww->marksl, ww);
// find our two children
pdyn *b1 = b->get_oldest_daughter();
pdyn *b2 = b1 ? b1->get_younger_sister() : NULL;
if(b2) {
vector sep = b1->get_pos() - b2->get_pos();
real dist = sqrt(sep * sep);
real mass = b->get_mass(); // = sum of b1&b2 masses.
real size = 0;
switch(ww->ringsizer) {
case KIRA_RINGSEP:
size = 0.5 * dist;
break;
case KIRA_RINGA:
{
vector vel = b1->get_vel() - b2->get_vel();
real speed2 = vel * vel;
real E = 0.5 * speed2 - mass / dist;
size = -mass / (2*E); // semimajor axis
}
}
marksp->val[SPECK_RINGSIZE] = size;
marksp->val[SPECK_MU] = b1->get_mass() / mass;
marksp->val[SPECK_SEPVEC] = sep[0];
marksp->val[SPECK_SEPVEC+1] = sep[1];
marksp->val[SPECK_SEPVEC+2] = sep[2];
}
}
// Recursion.
addr *= 2;
for_all_daughters(pdyn, b, bb)
sp = assign_specks(bb, top, addr++, sp, sl, ww);
if(b != top)
b->set_pos( oldpos );
return sp;
}
struct specklist *kira_to_parti(pdyn *root, struct dyndata *dd, struct stuff *st, struct worldstuff *ww)
{
if(ww == NULL || ww->nh == 0) return NULL;
struct specklist *sl = ww->bufsl[ww->bufno];
struct specklist *marksl = ww->bufmarksl[ww->bufno];
if(sl == NULL) {
// Use NewN to allocate these in (potentially) shared memory,
// rather than new which will allocate in local malloc pool.
// Needed for virdir/cave version.
int w, wmax = 0;
for(int k = 0; k < ww->nh; k++) {
if(ww->wh[k] && wmax < (w = ww->wh[k]->get_nw()))
wmax = w;
}
int smax = root->n_leaves();
ww->maxstars = smax + wmax + smax; // leave a bit of room for growth
ww->maxmarks = 1+smax;
ww->maxleaves = smax;
sl = NewN( struct specklist, 1 );
memset(sl, 0, sizeof(*sl));
sl->bytesperspeck = SMALLSPECKSIZE( SPECK_NDATAFIELDS );
sl->specks = NewNSpeck(sl, ww->maxstars);
sl->scaledby = 1;
marksl = NewN( struct specklist, 1 );
*marksl = *sl;
marksl->specks = NewNSpeck(marksl, ww->maxmarks);
marksl->special = MARKERS;
sl->nsel = ww->maxstars;
marksl->nsel = ww->maxmarks;
if(ww->bufsl[1 - ww->bufno]) {
sl->sel = ww->bufsl[1-ww->bufno]->sel;
marksl->sel = ww->bufmarksl[1-ww->bufno]->sel;
} else {
sl->sel = NewN( SelMask, ww->maxstars );
memset(sl->sel, 0, sl->nsel*sizeof(SelMask));
marksl->sel = NewN( SelMask, ww->maxmarks );
memset(marksl->sel, 0, marksl->nsel*sizeof(SelMask));
}
sl->next = marksl;
marksl->next = NULL;
if(ww->bufleafsel[1 - ww->bufno] != NULL) {
ww->bufleafsel[ww->bufno] = ww->bufleafsel[1 - ww->bufno];
} else { // Only one bufleafsel
ww->bufleafsel[ww->bufno] = NewN( SelMask, ww->maxstars );
ww->nleafsel = ww->maxstars;
memset(ww->bufleafsel[ww->bufno], 0, ww->maxstars*sizeof(SelMask));
}
ww->trails = NewN( trailhead, ww->maxstars );
memset(ww->trails, 0, ww->maxstars*sizeof(trailhead));
ww->bufsl[ww->bufno] = sl;
ww->bufmarksl[ww->bufno] = marksl;
}
ww->sl = sl;
ww->marksl = marksl;
struct speck *sp = sl->specks;
sl->nspecks = 0;
sl->colorseq = sl->sizeseq = sl->threshseq = 0;
marksl->colorseq = marksl->sizeseq = marksl->threshseq = 0;
marksl->nspecks = 0;
ww->marksp = marksl->specks;
ww->leafcount = 0;
ww->leafsel = ww->bufleafsel[ww->bufno];
int i;
struct vald *vd = ww->vd;
for(i = 0, vd = ww->vd; i < SPECK_NDATAFIELDS; i++, vd++) {
vd->min = 1e9;
vd->max = -1e9;
vd->sum = 0;
}
int ntotal = 0;
if(ww->wastracking) ww->wastracking = -1;
for_all_daughters(pdyn, root, b) {
int ns = sl->nspecks;
int mns = marksl->nspecks;
int nl = ww->leafcount;
speck *tsp = sp;
speck *msp = ww->marksp;
ww->interactsel = ww->unionsel = 0;
sp = assign_specks(b, b, !b->is_leaf(), sp, sl, ww);
int k;
int nleaves = ww->leafcount - nl;
int count = sl->nspecks - ns;
ww->unionsel |= ww->interactsel;
/* For all nodes in this subtree, ... */
for(k = 0; k < count; k++) {
tsp->val[SPECK_NCLUMP] += nleaves;
int id = (int)tsp->val[SPECK_ID];
if(id < 0) {
/* For CM nodes, negate nclump value. */
tsp->val[SPECK_NCLUMP] = -tsp->val[SPECK_NCLUMP];
/* Also, propagate all leaves' set membership to CM nodes */
sl->sel[ntotal] = ww->unionsel;
} else if(ww->interactsel && id < ww->nleafsel) {
/* For leaf nodes, if at least one star in this
* group is in the interaction set,
* then add all other group members to it.
*/
sl->sel[ntotal] = ww->leafsel[id] |= ww->interactsel;
/* Making trails? */
}
for(i = 0, vd = ww->vd; i <= SPECK_STYPE; i++, vd++) {
float v = tsp->val[i];
if(vd->min > v) vd->min = v;
if(vd->max < v) vd->max = v;
vd->sum += v;
}
ntotal++;
tsp = NextSpeck(tsp, sl, 1);
}
/* For all marks (rings, etc.) in this subtree */
count = marksl->nspecks - mns;
for(k = 0; k < count; k++) {
msp->val[SPECK_NCLUMP] += nleaves;
if(msp->val[0] < 0)
msp->val[SPECK_NCLUMP] = -msp->val[SPECK_NCLUMP]; // negate nclump for CM nodes
marksl->sel[mns+k] = ww->unionsel;
msp = NextSpeck(msp, sl, 1);
}
}
if(ww->wastracking < 0) ww->wastracking = 0; // Detach if tracked pcle not found now
for(i = 0, vd = ww->vd; i < SPECK_NDATAFIELDS && i < MAXVAL; i++, vd++) {
struct valdesc *tvd = &st->vdesc[ st->curdata ][ i ];
tvd->nsamples = ntotal;
if(vd->min > vd->max) {
vd->min = vd->max = 0;
tvd->nsamples = 0;
}
tvd->min = vd->min;
tvd->max = vd->max;
tvd->sum = vd->sum;
tvd->mean = tvd->nsamples > 0 ? vd->sum / tvd->nsamples : 0;
}
ww->bufno = 1 - ww->bufno;
return sl;
}
struct specklist *kira_get_parti( struct dyndata *dd, struct stuff *st, double realtime )
{
struct worldstuff *ww = (struct worldstuff *)dd->data;
if (ww == NULL || ww->nh == 0)
return NULL;
ww->treq = realtime;
if (realtime < ww->tmin) realtime = ww->tmin;
if (realtime > ww->tmax) realtime = ww->tmax;
if (ww->tcur == realtime && ww->slvalid)
return ww->sl;
int ih = ww->ih;
int nh = ww->nh;
worldbundle *wb = ww->wh[ih];
for(; realtime > wb->get_t_max() && ih < nh-1; ih++, wb = ww->wh[ih])
;
for(; realtime < wb->get_t_min() && ih > 0; ih--, wb = ww->wh[ih])
;
pdyn *root = create_interpolated_tree2(wb, realtime);
ww->center_pos = get_center_pos();
ww->center_vel = get_center_vel();
ww->sl = kira_to_parti(root, dd, st, ww);
if(getenv("DBGPID")) {
static int many;
if(many%256 < 4) fprintf(stderr, "kp%d(%d)%x ", getpid(),ww->bufno,ww->sl);
if(++many%256 == 4) fprintf(stderr, "\n");
}
ww->ih = ih;
ww->tcur = realtime;
ww->slvalid = 1;
return ww->sl;
}
static char *progname;
void msg( CONST char *fmt, ... ) {
va_list args;
va_start(args, fmt);
fprintf(stderr, "%s: ", progname);
vfprintf(stderr, fmt, args);
fputc('\n', stderr);
va_end(args);
}
struct state {
int type;
int group;
double realtime;
char axis;
float turnrate;
Matrix T0;
int has_T0;
float mag0;
float colorscale;
struct stuff *st;
int port;
int lsock;
} curstate = { ST_POINT, 0, 0.0 };
int scanopt(char *opt, char *arg) {
float *tp;
char *ep;
switch(opt[0]) {
case 'T':
tp = &curstate.T0.m[0];
"%f%*c%f%*c%f%*c%f%*c%f%*c%f%*c%f%*c%f%*c%f%*c%f%*c%f%*c%f%*c%f%*c%f%*c%f%*c%f",
tp+0,tp+1,tp+2,tp+3, tp+4,tp+5,tp+6,tp+7,
tp+8,tp+9,tp+10,tp+11, tp+12,tp+13,tp+14,tp+15);
if(k == 1) {
memset(tp, 0, 16*sizeof(float));
tp[5] = tp[10] = tp[0];
tp[15] = 1;
curstate.has_T0 = (tp[0] != 1.0);
} else if(k == 16) {
curstate.has_T0 = 1;
} else {
msg("T: expected 16 numbers");
return 0;
}
return 1;
case 't':
if(opt[1] == 'y') { /* "type" */
curstate.type = atoi(arg);
} else { /* "time" */
curstate.realtime = strtod( arg, &ep );
if(arg == ep) {
msg("%s: expected time", opt);
return 0;
}
}
return 1;
case 'r':
switch(arg[0]) {
case 'x': case 'y': case 'z': curstate.axis = arg[0]; break;
default: msg("%s: expected <axis><degrees/sec>[@time0]", opt); return 0;
}
curstate.turnrate = strtod( arg+1, NULL );
if((ep = strchr(arg, '@')) != NULL)
curstate.turntime0 = strtod(ep+1, NULL);
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
return 1;
case 'g':
curstate.group = atoi(arg);
return 1;
case 'm':
curstate.mag0 = atof(arg);
return 1;
case 'c':
curstate.colorscale = atof(arg);
return 1;
case 'p':
curstate.port = atoi(arg);
return 1;
default:
msg("unknown option %s %s", opt, arg);
return 0;
}
}
#if !WORDS_BIGENDIAN
void starswap(db_star *st) {
int i, *wp;
static int one = 1;
/* byte-swap x,y,z, dx,dy,dz, magnitude,radius,opacity fields (32-bit float),
* num (32-bit int),
* color (16-bit short).
* group and type fields shouldn't need swapping,
* assuming the compiler packs bytes into a word in increasing
* address order. Seems safe.
*/
if(*(char *)&one == 1) {
for(i = 0, wp = (int *)st; i < 10; i++)
wp[i] = htonl(wp[i]);
st->color = htons(st->color);
}
}
#else
#define starswap(x) /*nothing*/
#endif /*!WORDS_BIGENDIAN*/
static struct logTmap {
float logT;
unsigned short rgb565;
} tmap[] = {
// Adapted from Mitchell Charity's web page on black body RGB colors,
// http://www.vendian.org/mncharity/dir3/blackbody/
3.000, 0xf9c0, 3.079, 0xfa80, 3.204, 0xfb80, 3.301, 0xfc42,
3.380, 0xfce7, 3.477, 0xfdad, 3.556, 0xfe31, 3.643, 0xfed6,
3.716, 0xff5a, 3.792, 0xffbe, 3.869, 0xef7f, 3.944, 0xdf1f,
4.017, 0xcedf, 4.093, 0xbe9f, 4.164, 0xb67f, 4.236, 0xae5f,
4.310, 0xae3f, 4.380, 0xa61f, 4.450, 0xa5ff,
};
static unsigned short logT2rgb565(float logT) {
int i;
for(i = 0; i < COUNT(tmap)-1 && logT > tmap[i].logT; i++)
;
return tmap[i].rgb565;
}
int serveonce(char *req, FILE *outf)
{
int as_sdb = 0, as_speck = 0;
Matrix T;
int has_tfm;
Point p;
db_star star;
char *cp;
struct stuff *st = curstate.st;
double sx=0, sy=0, sz=0, smass=0;
float x0,y0,z0, x1,y1,z1;
int nspecks=0;
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
x0=y0=z0 = 1e20;
x1=y1=z1 = -1e20;
if(outf == NULL || req == NULL) {
msg("kira server: get lost!");
if(outf) fclose(outf);
return 0;
}
if(strstr(req, "sdb")) as_sdb = 1;
else if(strstr(req, "speck")) as_speck = 1;
char *eqp;
for(eqp = req; (eqp = strchr(eqp, '=')) != NULL; ) {
char *optp, *argp;
for(optp = eqp; isalpha(optp[-1]); optp--)
;
argp = eqp+1;
cp = strchr(argp, '&');
if(cp) {
eqp = cp+1;
*cp = '\0';
}
scanopt( optp, argp );
if(cp == NULL) break;
}
memset(&star, 0, sizeof(star));
star.group = curstate.group;
star.type = curstate.type;
struct specklist *sl;
sl = kira_get_parti( &st->dyn, st, curstate.realtime );
if(sl == NULL)
return 0;
has_tfm = curstate.has_T0 || curstate.turnrate != 0;
if(curstate.turnrate != 0) {
Matrix Trot;
mrotation( &Trot, curstate.turnrate * (curstate.realtime - curstate.turntime0), curstate.axis );
if(curstate.has_T0) {
mmmul( &T, &Trot, &curstate.T0 );
} else {
T = Trot;
}
} else {
T = curstate.T0;
}
for(int i = 0; i < sl->nspecks; i++) {
struct speck *sp = NextSpeck(sl->specks, sl, i);
if(sp->val[SPECK_NCLUMP] < 0)