Newer
Older
/*
* 3-D geometry (matrix, vector, quaternion) functions for partiview.
*
* Stuart Levy, slevy@ncsa.uiuc.edu
* National Center for Supercomputing Applications,
* University of Illinois 2001.
* This file is part of partiview, released under the
* Illinois Open Source License; see the file LICENSE.partiview for details.
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#ifdef sgi
#include <sys/endian.h>
#endif
#ifdef WIN32
# include "winjunk.h"
#endif
#include "geometry.h"
Matrix Tidentity = { 1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1 };
void vrotxy( register Point *dst, CONST Point *src, CONST float cs[2] )
{
dst->x[0] = src->x[0]*cs[0] - src->x[1]*cs[1];
dst->x[1] = src->x[0]*cs[1] + src->x[1]*cs[0];
dst->x[2] = src->x[2];
}
#define VDOT(a, b) \
((a)->x[0]*(b)->x[0] + (a)->x[1]*(b)->x[1] + (a)->x[2]*(b)->x[2])
#define VROTXY(dst, src, cs) \
(dst)->x[0] = (src)->x[0]*cs[0] - (src)->x[1]*cs[1], \
(dst)->x[1] = (src)->x[0]*cs[1] + (src)->x[1]*cs[0], \
(dst)->x[2] = (src)->x[2]
#define VMID(dst, a, b) \
(dst)->x[0] = .5*((a)->x[0] + (b)->x[0]), \
(dst)->x[1] = .5*((a)->x[1] + (b)->x[1]), \
(dst)->x[2] = .5*((a)->x[2] + (b)->x[2])
void vadd( register Point *dst, CONST Point *a, CONST Point *b )
{
dst->x[0] = a->x[0] + b->x[0];
dst->x[1] = a->x[1] + b->x[1];
dst->x[2] = a->x[2] + b->x[2];
}
void vsub( register Point *dst, CONST Point *a, CONST Point *b )
{
dst->x[0] = a->x[0] - b->x[0];
dst->x[1] = a->x[1] - b->x[1];
dst->x[2] = a->x[2] - b->x[2];
}
void vcross( register Point *dst, register CONST Point *a, register CONST Point *b )
{
dst->x[0] = a->x[1]*b->x[2] - a->x[2]*b->x[1];
dst->x[1] = a->x[2]*b->x[0] - a->x[0]*b->x[2];
dst->x[2] = a->x[0]*b->x[1] - a->x[1]*b->x[0];
}
float vdot( CONST Point *a, CONST Point *b ) {
return a->x[0]*b->x[0] + a->x[1]*b->x[1] + a->x[2]*b->x[2];
}
void vscale( register Point *dst, float s, register CONST Point *src )
{
dst->x[0] = s*src->x[0];
dst->x[1] = s*src->x[1];
dst->x[2] = s*src->x[2];
}
void vsadd( Point *dst, CONST Point *a, float sb, CONST Point *b )
{
dst->x[0] = a->x[0] + sb * b->x[0];
dst->x[1] = a->x[1] + sb * b->x[1];
dst->x[2] = a->x[2] + sb * b->x[2];
}
float vdist( CONST Point *p1, CONST Point *p2 ) {
Point d;
vsub(&d, p1, p2);
return vlength(&d);
}
float vlength( CONST Point *v ) {
return (float)sqrtf(VDOT(v, v));
}
float vunit( register Point *dst, register CONST Point *src ) {
float s = (float)sqrtf(VDOT(src, src));
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
float scl = s>0 ? 1.0f / s : 0;
vscale( dst, scl, src );
return s;
}
/* along = onto * (vec . onto / onto . onto)
* perp = vec - along
*/
void vproj( Point *along, Point *perp, CONST Point *vec, CONST Point *onto ) {
float mag2 = VDOT(onto, onto);
float dot = VDOT(vec, onto);
float s = (mag2 > 0) ? dot / mag2 : 0;
Point talong;
if(along == NULL) along = &talong;
vscale( along, s, onto );
if(perp != NULL)
vsadd( perp, vec, -1, along );
}
/*
* vtfmvector() transforms a vector (in homog coords, [x,y,z,0]) by a matrix.
* vtfmpoint() transforms a point [x,y,z,1].
* The difference is that vtfmpoint() includes the matrix's translation part
* and vtfmvector() doesn't.
*/
void vuntfmvector( Point *dst, register CONST Point *src, register CONST Matrix *T )
{
int i;
for(i = 0; i < 3; i++)
dst->x[i] = src->x[0]*T->m[4*i] + src->x[1]*T->m[4*i+1] + src->x[2]*T->m[4*i+2];
}
void vtfmvector( Point *dst, register CONST Point *src, register CONST Matrix *T )
{
int i;
for(i = 0; i < 3; i++)
dst->x[i] = src->x[0]*T->m[i] + src->x[1]*T->m[i+4] + src->x[2]*T->m[i+8];
}
void vtfmpoint( Point *dst, register CONST Point *src, register CONST Matrix *T )
{
int i;
for(i = 0; i < 3; i++)
dst->x[i] = src->x[0]*T->m[i] + src->x[1]*T->m[i+4] + src->x[2]*T->m[i+8] + T->m[i+12];
}
void vgettranslation( Point *dst, CONST Matrix *T )
{
memcpy(dst->x, &T->m[4*3+0], 3*sizeof(float));
}
void vsettranslation( Matrix *T, CONST Point *src )
{
memcpy(&T->m[4*3+0], src->x, 3*sizeof(float));
}
/* Invert a matrix, assuming it's a Euclidean isometry
* plus possibly uniform scaling.
*/
void eucinv( Matrix *dst, CONST Matrix *src )
{
int i, j;
float s = VDOT((Point *)src, (Point *)src);
Point trans;
Matrix T;
if(src == dst) {
T = *src;
src = &T;
}
for(i = 0; i < 3; i++) {
for(j = 0; j < 3; j++)
dst->m[i*4+j] = src->m[j*4+i] / s;
dst->m[i*4+3] = 0;
}
vtfmvector( &trans, (Point *)&src->m[4*3+0], dst );
vscale( (Point *)&dst->m[3*4+0], -1, &trans );
dst->m[3*4+3] = 1;
}
void mcopy( Matrix *dst, CONST Matrix *src )
{
memcpy( dst, src, sizeof(Matrix) );
}
void mmmul( Matrix *dst, CONST Matrix *a, CONST Matrix *b )
{
int i, irow, j;
Matrix tmp;
if(dst == a || dst == b) {
mmmul( &tmp, a, b );
*dst = tmp;
return;
}
for(i = 0; i < 4; i++) {
irow = i*4;
for(j = 0; j < 4; j++)
dst->m[irow+j] = a->m[irow]*b->m[j] + a->m[irow+1]*b->m[1*4+j]
+ a->m[irow+2]*b->m[2*4+j] + a->m[irow+3]*b->m[3*4+j];
}
}
/* Construct matrix for geodesic rotation from "a" to "b".
*/
void grotation( Matrix *Trot, CONST Point *va, CONST Point *vb )
{
Point a, b, aperp;
float ab_1, apb;
int i, j;
mcopy( Trot, &Tidentity );
if(vunit(&a, va) == 0 || vunit(&b, vb) == 0)
return;
ab_1 = VDOT(&a,&b) - 1;
vproj( NULL, &aperp, &b, &a );
if(vunit(&aperp, &aperp) == 0) {
if(ab_1 >= -1)
return; /* Vectors are identical: no rotation */
/* Otherwise, vectors are oppositely directed.
* Rotate in an arbitrary plane which includes them.
*/
aperp.x[ fabs(a.x[0]) < .7 ? 0 : 1 ] = 1;
vproj( NULL, &aperp, &aperp, &a );
vunit(&aperp, &aperp);
}
apb = VDOT(&aperp, &b);
for(i = 0; i < 3; i++) {
float acoef = a.x[i]*ab_1 - aperp.x[i]*apb;
float apcoef = aperp.x[i]*ab_1 + a.x[i]*apb;
for(j = 0; j < 3; j++)
Trot->m[i*4+j] += a.x[j]*acoef + aperp.x[j]*apcoef;
}
}
/*
* Conjugate a transformation as needed for interactive positioning,
* applying it in a given coordinate frame, and conjugating rotations
* to fix a given point.
* Coord abbreviations: "o" (object) "w" (world) "f" (frame) "cen" center.
* Tf2w and Tw2f are frame-to-world transform and its inverse.
* (Either may be NULL, in which case it's computed from the other.)
* (If both are NULL, we assume frame == world.)
* Rotation-fixing point is given by either:
* pcenw -- the point in world coordinates, if non-NULL, or
* pcenf -- the point in frame coordinates, if non-NULL.
* If both are NULL, the point is taken to be (0,0,0) in frame coordinates.
*/
void mconjugate( Matrix *To2wout, CONST Matrix *To2win, CONST Matrix *Tincrf,
CONST Matrix *Tf2w, CONST Matrix *Tw2f,
CONST Point *pcenw, CONST Point *pcenf )
{
Matrix t_incrf, t_f2w, t_w2f;
Matrix t1, t2;
Point pt1, pt2, tp_cenf;
if(Tf2w == NULL && Tw2f != NULL) {
Tf2w = &t_f2w;
eucinv((Matrix *)Tf2w, Tw2f);
} else if(Tw2f == NULL && Tf2w != NULL) {
Tw2f = &t_w2f;
eucinv((Matrix *)Tw2f, Tf2w);
}
if(pcenf == NULL && pcenw != NULL) {
if(Tw2f != NULL) {
vtfmpoint(&tp_cenf, pcenw, Tw2f);
pcenf = &tp_cenf;
} else {
pcenf = pcenw;
}
}
if(pcenf != NULL) {
t_incrf = *Tincrf;
vtfmvector( &pt1, pcenf, &t_incrf );
vsub( &pt1, pcenf, &pt1 );
vgettranslation( &pt2, &t_incrf );
vadd( &pt1, &pt1, &pt2 );
vsettranslation( &t_incrf, &pt1 );
Tincrf = &t_incrf;
}
if(Tf2w != NULL) {
mmmul( &t1, Tw2f, Tincrf );
mmmul( &t2, &t1, Tf2w );
mmmul( To2wout, To2win, &t2 );
} else {
mmmul( To2wout, To2win, Tincrf );
}
}
void mrotation( Matrix *rot, float degrees, char xyz ) {
float s = sinf(degrees * (M_PI/180));
float c = cosf(degrees * (M_PI/180));
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
int a = (xyz - 'x' + 1) % 3;
int b = (xyz - 'x' + 2) % 3;
*rot = Tidentity;
rot->m[a*4+a] = c;
rot->m[a*4+b] = s;
rot->m[b*4+a] = -s;
rot->m[b*4+b] = c;
}
void mscaling( Matrix *scale, float sx, float sy, float sz ) {
*scale = Tidentity;
scale->m[0*4+0] = sx;
scale->m[1*4+1] = sy;
scale->m[2*4+2] = sz;
}
void mtranslation( Matrix *tran, float tx, float ty, float tz ) {
*tran = Tidentity;
tran->m[3*4+0] = tx;
tran->m[3*4+1] = ty;
tran->m[3*4+2] = tz;
}
/*
* Convert the rotation part of a Euclidean isometry+uniform-scaling matrix
* into a unit quaternion, with non-negative real part.
* Returns the real part of the quaternion, with the three imaginary components
* left in iquat->x[0,1,2].
*/
float tfm2iquat( Point *iquat, CONST Matrix *T )
{
float mag, sinhalf, trace;
float scl = vlength((Point *)T); /* gauge scaling from 1st row */
Point axis;
#define Tij(i,j) T->m[(i)*4+(j)]
trace = scl==0 ? 3 : (Tij(0,0) + Tij(1,1) + Tij(2,2))/scl; /*1 + 2*cos(ang)*/
if(trace<-1) trace = -1; else if(trace > 3) trace = 3;
sinhalf = sqrtf(3 - trace) / 2; /* sin(angle/2) */
axis.x[0] = Tij(1,2) - Tij(2,1);
axis.x[1] = Tij(2,0) - Tij(0,2);
axis.x[2] = Tij(0,1) - Tij(1,0);
if(trace < -.25) {
/* Angle near pi; sin(angle) is small, so use cos-related elements */
float c = (trace-1)/2; /* cos(angle) */
float v = 1-c; /* versine(angle) */
if(Tij(0,0) > c+.5) { /* large x component */
axis.x[0] = sqrtf((Tij(0,0)-c)/v) * (axis.x[0]<0 ? -1 : 1);
axis.x[1] = (Tij(0,1)+Tij(1,0)) / (2*v*axis.x[0]);
axis.x[2] = (Tij(0,2)+Tij(2,0)) / (2*v*axis.x[0]);
} else if(Tij(1,1) > c+.5) { /* large Y component */
axis.x[1] = sqrtf((Tij(1,1)-c)/v) * (axis.x[1]<0 ? -1 : 1);
axis.x[0] = (Tij(0,1)+Tij(1,0)) / (2*v*axis.x[1]);
axis.x[2] = (Tij(2,1)+Tij(1,2)) / (2*v*axis.x[1]);
} else if(Tij(2,2) > c+.5) { /* large Z component */
axis.x[2] = sqrtf((Tij(2,2)-c)/v) * (axis.x[2]<0 ? -1 : 1);
axis.x[0] = (Tij(0,2)+Tij(2,0)) / (2*v*axis.x[2]);
axis.x[1] = (Tij(2,1)+Tij(1,2)) / (2*v*axis.x[2]);
} else {
int i;
fprintf(stderr, "Hey, tfm2quat() got a non-rotation matrix!\n");
fprintf(stderr, "Check this out:\n");
for(i=0;i<4;i++)
fprintf(stderr, "%12.8g %12.8g %12.8g %12.8g\n", Tij(i,0), Tij(i,1), Tij(i,2), Tij(i,3));
}
}
mag = vlength(&axis);
if(!finite(mag)) {
fprintf(stderr, "Yikes, tfm2quat() yields NaN?\n");
}
/* The imaginary part is a vector pointing along the axis of rotation,
* of magnitude sin(angle/2). So normalize & scale the axis,
* but don't fail if its magnitude was zero (i.e. no rotation).
*/
vscale( iquat, mag==0 ? 0 : sinhalf/mag, &axis );
return (float)sqrtf(1 + trace) * .5f;
void tfm2quat( Quat *quat, CONST Matrix *T )
{
float ww, xx, yy, zz; /* i.e. w^2, x^2, etc. */
float w, x, y, z, max;
float s = vlength( (Point *)&T->m[0*4+0] );
/* A rotation matrix is
* ww+xx-yy-zz 2(xy-wz) 2(xz+wy)
* 2(xy+wz) ww-xx+yy-zz 2(yz-wx)
* 2(xz-wy) 2(yz+wx) ww-xx-yy+zz
* and
* ww+xx+yy+zz = ss
*/
if(s > 0) {
/* OK */
} else {
quat->q[0] = 1;
quat->q[1] = quat->q[2] = quat->q[3] = 0;
return;
}
ww = (s + T->m[0*4+0] + T->m[1*4+1] + T->m[2*4+2]); /* 4 * w^2 */
xx = (s + T->m[0*4+0] - T->m[1*4+1] - T->m[2*4+2]);
yy = (s - T->m[0*4+0] + T->m[1*4+1] - T->m[2*4+2]);
zz = (s - T->m[0*4+0] - T->m[1*4+1] + T->m[2*4+2]);
max = ww;
if(max < xx) max = xx, best = 1;
if(max < yy) max = yy, best = 2;
if(max < zz) max = zz, best = 3;
switch(best) {
case 0: /* ww == max */
w = sqrtf(ww) * 2; /* 4w */
x = (T->m[2*4+1] - T->m[1*4+2]) / w; /* 4wx/4w */
y = (T->m[0*4+2] - T->m[2*4+0]) / w; /* 4wy/4w */
z = (T->m[1*4+0] - T->m[0*4+1]) / w; /* 4wz/4w */
w *= .25f; /* w */
x = sqrtf(xx) * 2; /* 4x */
w = (T->m[2*4+1] - T->m[1*4+2]) / x; /* 4wx/4x */
y = (T->m[1*4+0] + T->m[0*4+1]) / x; /* 4xy/4x */
z = (T->m[0*4+2] + T->m[2*4+0]) / x; /* 4xz/4x */
x *= .25f; /* x */
y = sqrtf(yy) * 2; /* 4y */
w = (T->m[0*4+2] - T->m[2*4+0]) / y; /* 4wy/4y */
x = (T->m[1*4+0] + T->m[0*4+1]) / y; /* 4xy/4y */
z = (T->m[2*4+1] + T->m[1*4+2]) / y; /* 4yz/4y */
y *= .25f; /* y */
z = sqrtf(zz) * 2; /* 4z */
w = (T->m[1*4+0] - T->m[0*4+1]) / z; /* 4wz/4z */
x = (T->m[0*4+2] + T->m[2*4+0]) / z; /* 4xz/4z */
y = (T->m[2*4+1] + T->m[1*4+2]) / z; /* 4yz/4z */
z *= .25f; /* z */
}
s = sqrtf(s);
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
quat->q[0] = -w/s;
quat->q[1] = x/s;
quat->q[2] = y/s;
quat->q[3] = z/s;
}
void quat2tfm( register Matrix *dst, CONST Quat *quat )
{
float txx, txy, txz, txw, tyy, tyz, tyw, tzz, tzw;
float ss = quat->q[0]*quat->q[0] + quat->q[1]*quat->q[1]
+ quat->q[2]*quat->q[2] + quat->q[3]*quat->q[3];
float sscl;
if(ss == 0) {
*dst = Tidentity;
return;
}
sscl = 2/ss;
txx = sscl*quat->q[1]*quat->q[1];
txy = sscl*quat->q[1]*quat->q[2];
txz = sscl*quat->q[1]*quat->q[3];
txw = sscl*quat->q[1]*quat->q[0];
tyy = sscl*quat->q[2]*quat->q[2];
tyz = sscl*quat->q[2]*quat->q[3];
tyw = sscl*quat->q[2]*quat->q[0];
tzz = sscl*quat->q[3]*quat->q[3];
tzw = sscl*quat->q[3]*quat->q[0];
dst->m[0*4+0] = 1 - (tyy+tzz); /* 1 - 2*(y^2 + z^2), etc. */
dst->m[0*4+1] = (txy+tzw);
dst->m[0*4+2] = (txz-tyw);
dst->m[1*4+0] = (txy-tzw);
dst->m[1*4+1] = 1 - (txx+tzz);
dst->m[1*4+2] = (tyz+txw);
dst->m[2*4+0] = (txz+tyw);
dst->m[2*4+1] = (tyz-txw);
dst->m[2*4+2] = 1 - (txx+tyy);
dst->m[0*4+3] = dst->m[1*4+3] = dst->m[2*4+3] =
dst->m[3*4+0] = dst->m[3*4+1] = dst->m[3*4+2] = 0;
dst->m[3*4+3] = 1;
}
void iquat2tfm( Matrix *dst, CONST Point *iquat )
{
Point axis;
float s, c, v, coshalf;
int i, j;
float sinhalf = vlength(iquat);
mcopy( dst, &Tidentity );
if(sinhalf == 0)
return;
if(sinhalf > 1) {
fprintf(stderr, "quat2tfm: Yikes, clamping quat to length 1 (was 1+%g)\n", sinhalf-1);
sinhalf = 1;
}
vscale(&axis, 1/sinhalf, iquat);
coshalf = sqrtf(1 - sinhalf*sinhalf);
s = 2*sinhalf*coshalf; /* sin(angle) */
v = 2*sinhalf*sinhalf; /* versine: 1 - cos(angle) */
c = 1 - v; /* cos(angle) */
for(i = 0; i < 3; i++) {
for(j = 0; j < i; j++)
dst->m[4*i+j] = dst->m[4*j+i] = axis.x[i]*axis.x[j]*v;
dst->m[4*i+i] = axis.x[i]*axis.x[i]*v + c;
}
dst->m[4*0+1] += axis.x[2]*s; dst->m[4*1+0] -= axis.x[2]*s;
dst->m[4*2+0] += axis.x[1]*s; dst->m[4*0+2] -= axis.x[1]*s;
dst->m[4*1+2] += axis.x[0]*s; dst->m[4*2+1] -= axis.x[0]*s;
}
float qdot( CONST Quat *qa, CONST Quat *qb ) {
return qa->q[0]*qb->q[0] + qa->q[1]*qb->q[1]
+ qa->q[2]*qb->q[2] + qa->q[3]*qb->q[3];
}
float qdist( CONST Quat *qa, CONST Quat *qb ) {
float dw, dx, dy, dz;
if(qdot(qa, qb) < 0) {
dw = qa->q[0] + qb->q[0];
dx = qa->q[1] + qb->q[1];
dy = qa->q[2] + qb->q[2];
dz = qa->q[3] + qb->q[3];
} else {
dw = qa->q[0] - qb->q[0];
dx = qa->q[1] - qb->q[1];
dy = qa->q[2] - qb->q[2];
dz = qa->q[3] - qb->q[3];
}
return sqrtf(dw*dw + dx*dx + dy*dy + dz*dz);
}
float iqdist( CONST Point *q1, CONST Point *q2 ) {
Point nq2;
float s, sneg;
vscale(&nq2, -1, q2);
s = vdist(q1,q2);
sneg = vdist(q1, &nq2);
return (s < sneg) ? s : sneg;
}
float tdist( CONST Matrix *t1, CONST Matrix *t2 ) {
float s = 0;
int i;
for(i=0; i<12; i++)
s += (t1->m[i]-t2->m[i])*(t1->m[i]-t2->m[i]);
return (float)sqrtf(s);
}
void rot2tfm( Matrix *dst, float degrees, CONST Point *gaxis )
{
Point axis;
int i, j;
float c, v, s;
*dst = Tidentity;
if(degrees == 0 || gaxis == NULL || vunit( &axis, gaxis ) == 0) {
return;
}
c = (float)cosf( degrees * (M_PI/180) );
s = (float)sinf( degrees * (M_PI/180) );
v = 1 - c;
for(i = 0; i < 3; i++) {
for(j = 0; j < i; j++)
dst->m[4*i+j] = dst->m[4*j+i] = axis.x[i]*axis.x[j]*v;
dst->m[4*i+i] = axis.x[i]*axis.x[i]*v + c;
}
dst->m[4*0+1] += axis.x[2]*s; dst->m[4*1+0] -= axis.x[2]*s;
dst->m[4*2+0] += axis.x[1]*s; dst->m[4*0+2] -= axis.x[1]*s;
dst->m[4*1+2] += axis.x[0]*s; dst->m[4*2+1] -= axis.x[0]*s;
}
void rot2iquat( Point *iquat, float degrees, CONST Point *axis )
vscale( iquat, sinf( degrees * (M_PI/360.) ), iquat );
}
void rot2quat( Quat *quat, float degrees, CONST Point *axis )
{
float half = degrees * (M_PI/360);
float len = vlength(axis);
float s;
if(len == 0 || half == 0) {
quat->q[0] = 1;
quat->q[1] = quat->q[2] = quat->q[3] = 0;
return;
}
s = sinf(half) / vlength(axis);
quat->q[0] = cosf(half);
vscale( (Point *)&quat->q[1], s, axis );
void quat_lerp( Quat *qdst, float frac, CONST Quat *qfrom, CONST Quat *qto ) {
;
qcomb( qdst,
frac, qfrom,
(qdot( qfrom, qto ) < 0) ? frac-1 : 1-frac, qto );
qnorm( qdst, qdst );
}
void iquat_lerp( Point *qdst, float frac, CONST Point *qfrom, CONST Point *qto ) {
Point dst;
Point tto = *qto;
float s, rdst;
float ifrom2 = VDOT(qfrom,qfrom);
float rfrom = ifrom2>1 ? 0 : (float)sqrtf(1 - ifrom2); /* Real part */
float rto = ito2>1 ? 0 : sqrtf(1 - ito2);
float dot = VDOT(qfrom,&tto);
if(dot < 0) {
/* quaternions are in opposite hemispheres: negate "tto" */
rto = -rto;
vscale( &tto, -1, &tto );
}
/* Use linear interpolation between the quaternions. This isn't right,
* but shouldn't be far off if they don't differ by much.
*/
rdst = (1-frac)*rfrom + frac*rto;
vlerp( &dst, frac, qfrom, &tto );
s = 1/sqrtf(rdst*rdst + VDOT(&dst,&dst));
if(!finite(s)) {
fprintf(stderr, "Yeow!\n");
}
if(rdst < 0) s = -s;
vscale( qdst, s, &dst );
}
/*
* Decompose the rotation & translation part of a camera-to-world matrix
* (which may also include some *uniform* scaling)
* into a product of three rotations:
*
* Rotation(c2w) = rot('z', aer[2]) * rot('x', aer[1]) * rot('y', aer[0])
*
* Angles are returned in *degrees*, not radians!
* aer[] stands for Azimuth, Elevation, and Roll, in that order.
* aer[0] ~ y-rotation (closest to world)
* aer[1] ~ x-rotation
* aer[2] ~ z-rotation (closest to camera)
*/
float tfm2xyzaer( Point *xyz, float aer[3], CONST Matrix *c2w )
float sx, cx, scl;
Point xrow = *(Point *)&c2w->m[2*4+0];
if(xyz != NULL)
vgettranslation( xyz, c2w );
scl = vunit( &xrow, &xrow );
if(aer) {
sx = -xrow.x[1]; /* normalized -m[2][1] */
cx = (sx<-1 || sx>1) ? 0 : sqrtf(1 - sx*sx);
aer[1] = atan2f( sx, cx ) * 180/M_PI; /* xrot */
if(cx < .001) {
aer[0] = atan2f( c2w->m[1*4+0], c2w->m[0*4+0] )
aer[2] = 0;
} else {
aer[0] = atan2f( c2w->m[2*4+0], c2w->m[2*4+2] ) * 180/M_PI; /* yrot */
aer[2] = atan2f( c2w->m[0*4+1], c2w->m[1*4+1] ) * 180/M_PI; /* zrot */
}
}
/*
* Tcam2world = RotZ(aer[2]) * RotX(aer[1]) * RotY(aer[0]) * Translate(xyz)
*/
void xyzaer2tfm( Matrix *c2w, CONST Point *xyz, CONST float aer[3] )
{
Matrix rx, ry, rz, t;
if(aer == NULL) {
*c2w = Tidentity;
} else {
mrotation( &ry, aer[0], 'y' );
mrotation( &rx, aer[1], 'x' );
mrotation( &rz, aer[2], 'z' );
mmmul( &t, &rz, &rx );
mmmul( c2w, &t, &ry );
}
if(xyz != NULL)
vsettranslation( c2w, xyz );
}
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
/*
* Like glFrustum( left, right, bottom, top, near, far ):
* ( 2*$n/($r-$l), 0, 0, 0,
* 0, 2*$n/($t-$b), 0, 0,
* ($r+$l)/($r-$l), ($t+$b)/($t-$b), -($n+$f)/($f-$n), -1,
* 0, 0, -2*$f*$n/($f-$n), 0 );
*/
void mfrustum( Matrix *Tproj, float l, float r, float b, float t, float n, float f )
{
float dx = r - l; /* right - left */
float dy = t - b; /* top - bottom */
float dz = f - n; /* far - near */
if(dx == 0 || dy == 0 || dz == 0 || f == 0 || n == 0) {
*Tproj = Tidentity;
return;
}
memset(Tproj, 0, sizeof(Matrix));
Tproj->m[0*4+0] = 2*n / dx;
Tproj->m[1*4+1] = 2*n / dy;
Tproj->m[2*4+0] = (l+r) / dx;
Tproj->m[2*4+1] = (t+b) / dy;
Tproj->m[2*4+2] = -(n+f) / dz;
Tproj->m[2*4+3] = -1;
Tproj->m[3*4+2] = -2*n*f / dz;
}
void vlerp( Point *dst, float frac, CONST Point *vfrom, CONST Point *vto )
{
dst->x[0] = (1-frac)*vfrom->x[0] + frac*vto->x[0];
dst->x[1] = (1-frac)*vfrom->x[1] + frac*vto->x[1];
dst->x[2] = (1-frac)*vfrom->x[2] + frac*vto->x[2];
}
/* Linear combination: dst = sa*a + sb*b */
void vcomb( Point *dst, float sa, CONST Point *a, float sb, CONST Point *b )
{
dst->x[0] = sa*a->x[0] + sb*b->x[0];
dst->x[1] = sa*a->x[1] + sb*b->x[1];
dst->x[2] = sa*a->x[2] + sb*b->x[2];
void qcomb( Quat *dst, float sa, CONST Quat *qa, float sb, CONST Quat *qb )
{
dst->q[0] = sa*qa->q[0] + sb*qb->q[0];
dst->q[1] = sa*qa->q[1] + sb*qb->q[1];
dst->q[2] = sa*qa->q[2] + sb*qb->q[2];
dst->q[3] = sa*qa->q[3] + sb*qb->q[3];
}
void qnorm( Quat *dst, CONST Quat *src )
{
float s = src->q[0]*src->q[0] + src->q[1]*src->q[1]
+ src->q[2]*src->q[2] + src->q[3]*src->q[3];
if(s != 0)
s = 1/sqrtf(s);
dst->q[0] = src->q[0]*s;
dst->q[1] = src->q[1]*s;
dst->q[2] = src->q[2]*s;
dst->q[3] = src->q[3]*s;
}