-
Nattapon Jaroenchai authoredNattapon Jaroenchai authored
unet_util.py 12.71 KiB
# Load all the dependencies
import os
import sys
import copy
import random
import warnings
import numpy as np
from itertools import chain
from PIL import Image as im
from numpy import genfromtxt
from tensorflow import random
from keras import backend as K
from tensorflow.keras.optimizers import Adam, SGD, RMSprop
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau
from tensorflow.keras.layers import Layer, UpSampling2D, GlobalAveragePooling2D, Multiply, Dense, Reshape, Permute, multiply, dot, add, Input
from tensorflow.keras.layers import Dropout, Lambda, SpatialDropout2D, Activation
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import Conv2D, Conv2DTranspose
from tensorflow.keras.layers import MaxPooling2D
from tensorflow.keras.layers import concatenate
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from tensorflow.keras.models import Model, load_model, model_from_yaml, Sequential
from sklearn.metrics import f1_score, precision_score,recall_score, cohen_kappa_score
from datetime import datetime, timezone, timedelta
# Use dice coefficient function as the loss function
def dice_coef(y_true, y_pred):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2.0 * intersection + 1.0) / (K.sum(y_true_f) + K.sum(y_pred_f) + 1.0)
# Jacard coefficient
def jacard_coef(y_true, y_pred):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (intersection + 1.0) / (K.sum(y_true_f) + K.sum(y_pred_f) - intersection + 1.0)
# calculate loss value
def jacard_coef_loss(y_true, y_pred):
return -jacard_coef(y_true, y_pred)
# calculate loss value
def dice_coef_loss(y_true, y_pred):
return -dice_coef(y_true, y_pred)
def Residual_CNN_block(x, size, dropout=0.0, batch_norm=True):
if K.image_data_format() == 'th':
axis = 1
else:
axis = 3
conv = Conv2D(size, (3, 3), padding='same')(x)
if batch_norm is True:
conv = BatchNormalization(axis=axis)(conv)
conv = Activation('relu')(conv)
conv = Conv2D(size, (3, 3), padding='same')(conv)
if batch_norm is True:
conv = BatchNormalization(axis=axis)(conv)
conv = Activation('relu')(conv)
conv = Conv2D(size, (3, 3), padding='same')(conv)
if batch_norm is True:
conv = BatchNormalization(axis=axis)(conv)
conv = Activation('relu')(conv)
return conv
class multiplication(Layer):
def __init__(self,inter_channel = None,**kwargs):
super(multiplication, self).__init__(**kwargs)
self.inter_channel = inter_channel
def build(self,input_shape=None):
self.k = self.add_weight(name='k',shape=(1,),initializer='zeros',dtype='float32',trainable=True)
def get_config(self):
base_config = super(multiplication, self).get_config()
config = {'inter_channel':self.inter_channel}
return dict(list(base_config.items()) + list(config.items()))
def call(self,inputs):
g,x,x_query,phi_g,x_value = inputs[0],inputs[1],inputs[2],inputs[3],inputs[4]
h,w,c = int(x.shape[1]),int(x.shape[2]),int(x.shape[3])
x_query = K.reshape(x_query, shape=(-1,h*w, self.inter_channel//4))
phi_g = K.reshape(phi_g,shape=(-1,h*w,self.inter_channel//4))
x_value = K.reshape(x_value,shape=(-1,h*w,c))
scale = dot([K.permute_dimensions(phi_g,(0,2,1)), x_query], axes=(1, 2))
soft_scale = Activation('softmax')(scale)
scaled_value = dot([K.permute_dimensions(soft_scale,(0,2,1)),K.permute_dimensions(x_value,(0,2,1))],axes=(1, 2))
scaled_value = K.reshape(scaled_value, shape=(-1,h,w,c))
customize_multi = self.k * scaled_value
layero = add([customize_multi,x])
my_concat = Lambda(lambda x: K.concatenate([x[0], x[1]], axis=3))
concate = my_concat([layero,g])
return concate
def compute_output_shape(self,input_shape):
ll = list(input_shape)[1]
return (None,ll[1],ll[1],ll[3]*3)
def get_custom_objects():
return {'multiplication': multiplication}
def attention_up_and_concatenate(inputs):
g,x = inputs[0],inputs[1]
inter_channel = g.get_shape().as_list()[3]
g = Conv2DTranspose(inter_channel, (2,2), strides=[2, 2],padding='same')(g)
x_query = Conv2D(inter_channel//4, [1, 1], strides=[1, 1], data_format='channels_last')(x)
phi_g = Conv2D(inter_channel//4, [1, 1], strides=[1, 1], data_format='channels_last')(g)
x_value = Conv2D(inter_channel//2, [1, 1], strides=[1, 1], data_format='channels_last')(x)
inputs = [g,x,x_query,phi_g,x_value]
concate = multiplication(inter_channel)(inputs)
return concate
class multiplication2(Layer):
def __init__(self,inter_channel = None,**kwargs):
super(multiplication2, self).__init__(**kwargs)
self.inter_channel = inter_channel
def build(self,input_shape=None):
self.k = self.add_weight(name='k',shape=(1,),initializer='zeros',dtype='float32',trainable=True)
def get_config(self):
base_config = super(multiplication2, self).get_config()
config = {'inter_channel':self.inter_channel}
return dict(list(base_config.items()) + list(config.items()))
def call(self,inputs):
g,x,rate = inputs[0],inputs[1],inputs[2]
scaled_value = multiply([x, rate])
att_x = self.k * scaled_value
att_x = add([att_x,x])
my_concat = Lambda(lambda x: K.concatenate([x[0], x[1]], axis=3))
concate = my_concat([att_x, g])
return concate
def compute_output_shape(self,input_shape):
ll = list(input_shape)[1]
return (None,ll[1],ll[1],ll[3]*2)
def get_custom_objects():
return {'multiplication2': multiplication2}
def attention_up_and_concatenate2(inputs):
g, x = inputs[0],inputs[1]
inter_channel = g.get_shape().as_list()[3]
g = Conv2DTranspose(inter_channel//2, (3,3), strides=[2, 2],padding='same')(g)
g = Conv2D(inter_channel//2, [1, 1], strides=[1, 1], data_format='channels_last')(g)
theta_x = Conv2D(inter_channel//4, [1, 1], strides=[1, 1], data_format='channels_last')(x)
phi_g = Conv2D(inter_channel//4, [1, 1], strides=[1, 1], data_format='channels_last')(g)
f = Activation('relu')(add([theta_x, phi_g]))
psi_f = Conv2D(1, [1, 1], strides=[1, 1], data_format='channels_last')(f)
rate = Activation('sigmoid')(psi_f)
concate = multiplication2()([g,x,rate])
return concate
def UNET_224(IMG_WIDTH=224, INPUT_CHANNELS=8, OUTPUT_MASK_CHANNELS=1, weights=None):
inputs = Input((IMG_WIDTH, IMG_WIDTH, INPUT_CHANNELS))
filters = 32
last_dropout = 0.2
# convolutiona and pooling level 1
conv_224 = Residual_CNN_block(inputs,filters)
pool_112 = MaxPooling2D(pool_size=(2, 2))(conv_224)
# convolutiona and pooling level 2
conv_112 = Residual_CNN_block(pool_112,2*filters)
pool_56 = MaxPooling2D(pool_size=(2, 2))(conv_112)
# convolutiona and pooling level 3
conv_56 = Residual_CNN_block(pool_56,4*filters)
pool_28 = MaxPooling2D(pool_size=(2, 2))(conv_56)
# convolutiona and pooling level 4
conv_28 = Residual_CNN_block(pool_28,8*filters)
pool_14 = MaxPooling2D(pool_size=(2, 2))(conv_28)
# convolutiona and pooling level 5
conv_14 = Residual_CNN_block(pool_14,16*filters)
pool_7 = MaxPooling2D(pool_size=(2, 2))(conv_14)
# Conlovlution and feature concatenation
conv_7 = Residual_CNN_block(pool_7,32*filters)
# Upsampling with convolution
up_14 = attention_up_and_concatenate([conv_7, conv_14])
up_conv_14 = Residual_CNN_block(up_14,16*filters)
# Upsampling with convolution 2
up_28 = attention_up_and_concatenate([up_conv_14, conv_28])
up_conv_28 = Residual_CNN_block(up_28,8*filters)
# Upsampling with convolution 3
up_56 = attention_up_and_concatenate2([up_conv_28, conv_56])
up_conv_56 = Residual_CNN_block(up_56,4*filters)
# Upsampling with convolution 4
up_112 = attention_up_and_concatenate2([up_conv_56, conv_112])
up_conv_112 = Residual_CNN_block(up_112,2*filters)
# Upsampling with convolution 5
up_224 = attention_up_and_concatenate2([up_conv_112, conv_224])
#up_224 = attention_up_and_concatenate2(up_conv_112, conv_224)
up_conv_224 = Residual_CNN_block(up_224,filters,dropout = last_dropout)
# 1 dimensional convolution and generate probabilities from Sigmoid function
conv_final = Conv2D(OUTPUT_MASK_CHANNELS, (1, 1))(up_conv_224)
conv_final = Activation('sigmoid')(conv_final)
# Generate model
model = Model(inputs, conv_final, name="UNET_224")
return model
def append_new_line(file_name, text_to_append):
"""Append given text as a new line at the end of file"""
# Open the file in append & read mode ('a+')
with open(file_name, "a+") as file_object:
# Move read cursor to the start of file.
file_object.seek(0)
# If file is not empty then append '\n'
data = file_object.read(100)
if len(data) > 0:
file_object.write("\n")
# Append text at the end of file
file_object.write(text_to_append)
def evaluate_prediction_result(location, pred_npy, mask_npy, label_npy, model_path, txt_path):
prediction_npy = np.load(pred_npy)
prediction_mask_npy = np.load(mask_npy)
predition_label_npy = np.load(label_npy)
#print("All data are loaded")
dim = predition_label_npy.shape
buf = 30
numr = 41
numc = (dim[0]//41)-1
count = -1
for i in range(numr):
# if(location == 'covington' and i == 20):
# break
# Concate each column to create row ith
# numc_con = int(numc/2)-1 if(location == 'covington') else numc
numc_con = int(numc)-1
for j in range(numc_con):
count += 1
temp = prediction_npy[count][buf:-buf,buf:-buf]
if j == 0:
rows = temp
else:
rows = np.concatenate((rows,temp),axis = 1)
# Concate the row ith to the total preditcion
if i == 0:
prediction_map = copy.copy(rows)
else:
prediction_map = np.concatenate((prediction_map,rows),axis = 0)
#print("prediction_map",prediction_map.shape)
prediction_map = prediction_map[:,:,0]
# mask
mask = prediction_mask_npy[:prediction_map.shape[0],:prediction_map.shape[1]]
[lr,lc] = np.where(mask == 1)
# print("mask",mask.shape)
# Read reference data
groundtruth = predition_label_npy[:prediction_map.shape[0],:prediction_map.shape[1]]
groundtruthlist = predition_label_npy[:prediction_map.shape[0],:prediction_map.shape[1]][lr,lc]
prediction = np.logical_and(prediction_map,mask)
predictionlist = np.logical_and(prediction_map,mask)[lr,lc]
f1_nonstream = f1_score(groundtruthlist, predictionlist,labels=[0], average = 'micro')
f1_stream = f1_score(groundtruthlist, predictionlist,labels=[1], average = 'micro')
precision_nonstream = precision_score(groundtruthlist, predictionlist,labels=[0], average = 'micro')
precision_stream = precision_score(groundtruthlist, predictionlist,labels=[1], average = 'micro')
recall_nonstream = recall_score(groundtruthlist, predictionlist,labels=[0], average = 'micro')
recall_stream = recall_score(groundtruthlist, predictionlist,labels=[1], average = 'micro')
cohen_kappa = cohen_kappa_score(groundtruthlist, predictionlist)
append_new_line(txt_path, 'Model path:' + model_path + ' Run at: ' + str(datetime.now()))
append_new_line(txt_path, 'F1 score of Nonstream: '+str(f1_nonstream))
append_new_line(txt_path, 'F1 score of Stream: '+str(f1_stream))
append_new_line(txt_path, 'Precision of Nonstream: '+str(precision_nonstream))
append_new_line(txt_path, 'Precision of Stream: '+str(precision_stream))
append_new_line(txt_path, 'Recall of Nonstream: '+str(recall_nonstream))
append_new_line(txt_path, 'Recall of Stream: '+str(recall_stream))
append_new_line(txt_path, 'Cohen Kappa: '+str(cohen_kappa))
print('Model path:' + model_path + ' Run at: ' + str(datetime.now(timezone(timedelta(hours=-6), 'utc'))))
print('F1 score of Nonstream: '+str(f1_nonstream))
print('F1 score of Stream: '+str(f1_stream))
print('Precision of Nonstream: '+str(precision_nonstream))
print('Precision of Stream: '+str(precision_stream))
print('Recall of Nonstream: '+str(recall_nonstream))
print('Recall of Stream: '+str(recall_stream))
print('Cohen Kappa: '+str(cohen_kappa))
data = im.fromarray(prediction.astype('float'))
data.save(pred_npy[:-4]+".tif")