diff --git a/POWER/power.py b/POWER/power.py index e5a49df81594534c8d8007397d1502f94ab61131..7301822f4227a575c2e494f8299c9bab89f0f41c 100755 --- a/POWER/power.py +++ b/POWER/power.py @@ -144,8 +144,8 @@ def ffi(freq, data, f0): f1 = f0/(2*math.pi) fs = freq gs = data - mask1 = (np.sign((fs/f1) - 1) + 1)/2 - mask2 = (np.sign((-fs/f1) - 1) + 1)/2 + mask1 = (np.sign((fs/f1) - 1) + 1)/2. + mask2 = (np.sign((-fs/f1) - 1) + 1)/2. mask = 1 - (1 - mask1) * (1 - mask2) fs2 = mask * fs + (1-mask) * f1 * np.sign(fs - np.finfo(float).eps) new_gs = gs/(2*math.pi*1.j*fs2) @@ -161,7 +161,7 @@ def myFourierTransform(t0, complexPsi): """ psif = np.fft.fft(complexPsi, norm="ortho") l = len(complexPsi) - n = int(math.floor(l/2)) + n = int(math.floor(l/2.)) newpsif = psif[l-n:] newpsif = np.append(newpsif, psif[:l-n]) T = np.amin(np.diff(t0))*l @@ -171,7 +171,7 @@ def myFourierTransform(t0, complexPsi): #Inverse Fourier Transform def myFourierTransformInverse(freq, hf, t0): l = len(hf) - n = int(math.floor(l/2)) + n = int(math.floor(l/2.)) newhf = hf[n:] newhf = np.append(newhf, hf[:n]) amp = np.fft.ifft(newhf, norm="ortho") @@ -180,8 +180,8 @@ def myFourierTransformInverse(freq, hf, t0): return time, amp def angular_momentum(x, q, m, chi1, chi2, LInitNR): - eta = q/(1.+q)**2. - m1 = (1.+(1.-4.*eta)**0.5)/2. + eta = q/(1.+q)**2 + m1 = (1.+sqrt(1.-4.*eta))/2. m2 = m - m1 S1 = m1**2. * chi1 S2 = m2**2. * chi2 @@ -265,8 +265,8 @@ def getCutoffFrequency(sim_name): LInitNR = xp*pyp + xm*pym M = m1+m2 q = m1/m2 - chi1 = S1/math.pow(m1, 2.) - chi2 = S2/math.pow(m2, 2.) + chi1 = S1/m1**2 + chi2 = S2/m2**2 # .014 is the initial guess for cutoff frequency omOrbPN = scipy.optimize.fsolve(angular_momentum, .014, (q, M, chi1, chi2, LInitNR))[0] omOrbPN = omOrbPN**(3./2.)