# Load all the dependencies import os import sys import copy import random import warnings import numpy as np from itertools import chain from PIL import Image as im from numpy import genfromtxt from tensorflow import random from keras import backend as K from tensorflow.keras.optimizers import Adam, SGD, RMSprop from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau from tensorflow.keras.layers import Layer, UpSampling2D, GlobalAveragePooling2D, Multiply, Dense, Reshape, Permute, multiply, dot, add, Input from tensorflow.keras.layers import Dropout, Lambda, SpatialDropout2D, Activation from tensorflow.keras.layers import BatchNormalization from tensorflow.keras.layers import Conv2D, Conv2DTranspose from tensorflow.keras.layers import MaxPooling2D from tensorflow.keras.layers import concatenate from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint from tensorflow.keras.models import Model, load_model, model_from_yaml, Sequential from sklearn.metrics import f1_score, precision_score,recall_score, cohen_kappa_score from datetime import datetime, timezone, timedelta # Use dice coefficient function as the loss function def dice_coef(y_true, y_pred): y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = K.sum(y_true_f * y_pred_f) return (2.0 * intersection + 1.0) / (K.sum(y_true_f) + K.sum(y_pred_f) + 1.0) # Jacard coefficient def jacard_coef(y_true, y_pred): y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = K.sum(y_true_f * y_pred_f) return (intersection + 1.0) / (K.sum(y_true_f) + K.sum(y_pred_f) - intersection + 1.0) # calculate loss value def jacard_coef_loss(y_true, y_pred): return -jacard_coef(y_true, y_pred) # calculate loss value def dice_coef_loss(y_true, y_pred): return -dice_coef(y_true, y_pred) def Residual_CNN_block(x, size, dropout=0.0, batch_norm=True): if K.image_data_format() == 'th': axis = 1 else: axis = 3 conv = Conv2D(size, (3, 3), padding='same')(x) if batch_norm is True: conv = BatchNormalization(axis=axis)(conv) conv = Activation('relu')(conv) conv = Conv2D(size, (3, 3), padding='same')(conv) if batch_norm is True: conv = BatchNormalization(axis=axis)(conv) conv = Activation('relu')(conv) conv = Conv2D(size, (3, 3), padding='same')(conv) if batch_norm is True: conv = BatchNormalization(axis=axis)(conv) conv = Activation('relu')(conv) return conv class multiplication(Layer): def __init__(self,inter_channel = None,**kwargs): super(multiplication, self).__init__(**kwargs) self.inter_channel = inter_channel def build(self,input_shape=None): self.k = self.add_weight(name='k',shape=(1,),initializer='zeros',dtype='float32',trainable=True) def get_config(self): base_config = super(multiplication, self).get_config() config = {'inter_channel':self.inter_channel} return dict(list(base_config.items()) + list(config.items())) def call(self,inputs): g,x,x_query,phi_g,x_value = inputs[0],inputs[1],inputs[2],inputs[3],inputs[4] h,w,c = int(x.shape[1]),int(x.shape[2]),int(x.shape[3]) x_query = K.reshape(x_query, shape=(-1,h*w, self.inter_channel//4)) phi_g = K.reshape(phi_g,shape=(-1,h*w,self.inter_channel//4)) x_value = K.reshape(x_value,shape=(-1,h*w,c)) scale = dot([K.permute_dimensions(phi_g,(0,2,1)), x_query], axes=(1, 2)) soft_scale = Activation('softmax')(scale) scaled_value = dot([K.permute_dimensions(soft_scale,(0,2,1)),K.permute_dimensions(x_value,(0,2,1))],axes=(1, 2)) scaled_value = K.reshape(scaled_value, shape=(-1,h,w,c)) customize_multi = self.k * scaled_value layero = add([customize_multi,x]) my_concat = Lambda(lambda x: K.concatenate([x[0], x[1]], axis=3)) concate = my_concat([layero,g]) return concate def compute_output_shape(self,input_shape): ll = list(input_shape)[1] return (None,ll[1],ll[1],ll[3]*3) def get_custom_objects(): return {'multiplication': multiplication} def attention_up_and_concatenate(inputs): g,x = inputs[0],inputs[1] inter_channel = g.get_shape().as_list()[3] g = Conv2DTranspose(inter_channel, (2,2), strides=[2, 2],padding='same')(g) x_query = Conv2D(inter_channel//4, [1, 1], strides=[1, 1], data_format='channels_last')(x) phi_g = Conv2D(inter_channel//4, [1, 1], strides=[1, 1], data_format='channels_last')(g) x_value = Conv2D(inter_channel//2, [1, 1], strides=[1, 1], data_format='channels_last')(x) inputs = [g,x,x_query,phi_g,x_value] concate = multiplication(inter_channel)(inputs) return concate class multiplication2(Layer): def __init__(self,inter_channel = None,**kwargs): super(multiplication2, self).__init__(**kwargs) self.inter_channel = inter_channel def build(self,input_shape=None): self.k = self.add_weight(name='k',shape=(1,),initializer='zeros',dtype='float32',trainable=True) def get_config(self): base_config = super(multiplication2, self).get_config() config = {'inter_channel':self.inter_channel} return dict(list(base_config.items()) + list(config.items())) def call(self,inputs): g,x,rate = inputs[0],inputs[1],inputs[2] scaled_value = multiply([x, rate]) att_x = self.k * scaled_value att_x = add([att_x,x]) my_concat = Lambda(lambda x: K.concatenate([x[0], x[1]], axis=3)) concate = my_concat([att_x, g]) return concate def compute_output_shape(self,input_shape): ll = list(input_shape)[1] return (None,ll[1],ll[1],ll[3]*2) def get_custom_objects(): return {'multiplication2': multiplication2} def attention_up_and_concatenate2(inputs): g, x = inputs[0],inputs[1] inter_channel = g.get_shape().as_list()[3] g = Conv2DTranspose(inter_channel//2, (3,3), strides=[2, 2],padding='same')(g) g = Conv2D(inter_channel//2, [1, 1], strides=[1, 1], data_format='channels_last')(g) theta_x = Conv2D(inter_channel//4, [1, 1], strides=[1, 1], data_format='channels_last')(x) phi_g = Conv2D(inter_channel//4, [1, 1], strides=[1, 1], data_format='channels_last')(g) f = Activation('relu')(add([theta_x, phi_g])) psi_f = Conv2D(1, [1, 1], strides=[1, 1], data_format='channels_last')(f) rate = Activation('sigmoid')(psi_f) concate = multiplication2()([g,x,rate]) return concate def UNET_224(IMG_WIDTH=224, INPUT_CHANNELS=8, OUTPUT_MASK_CHANNELS=1, weights=None): inputs = Input((IMG_WIDTH, IMG_WIDTH, INPUT_CHANNELS)) filters = 32 last_dropout = 0.2 # convolutiona and pooling level 1 conv_224 = Residual_CNN_block(inputs,filters) pool_112 = MaxPooling2D(pool_size=(2, 2))(conv_224) # convolutiona and pooling level 2 conv_112 = Residual_CNN_block(pool_112,2*filters) pool_56 = MaxPooling2D(pool_size=(2, 2))(conv_112) # convolutiona and pooling level 3 conv_56 = Residual_CNN_block(pool_56,4*filters) pool_28 = MaxPooling2D(pool_size=(2, 2))(conv_56) # convolutiona and pooling level 4 conv_28 = Residual_CNN_block(pool_28,8*filters) pool_14 = MaxPooling2D(pool_size=(2, 2))(conv_28) # convolutiona and pooling level 5 conv_14 = Residual_CNN_block(pool_14,16*filters) pool_7 = MaxPooling2D(pool_size=(2, 2))(conv_14) # Conlovlution and feature concatenation conv_7 = Residual_CNN_block(pool_7,32*filters) # Upsampling with convolution up_14 = attention_up_and_concatenate([conv_7, conv_14]) up_conv_14 = Residual_CNN_block(up_14,16*filters) # Upsampling with convolution 2 up_28 = attention_up_and_concatenate([up_conv_14, conv_28]) up_conv_28 = Residual_CNN_block(up_28,8*filters) # Upsampling with convolution 3 up_56 = attention_up_and_concatenate2([up_conv_28, conv_56]) up_conv_56 = Residual_CNN_block(up_56,4*filters) # Upsampling with convolution 4 up_112 = attention_up_and_concatenate2([up_conv_56, conv_112]) up_conv_112 = Residual_CNN_block(up_112,2*filters) # Upsampling with convolution 5 up_224 = attention_up_and_concatenate2([up_conv_112, conv_224]) #up_224 = attention_up_and_concatenate2(up_conv_112, conv_224) up_conv_224 = Residual_CNN_block(up_224,filters,dropout = last_dropout) # 1 dimensional convolution and generate probabilities from Sigmoid function conv_final = Conv2D(OUTPUT_MASK_CHANNELS, (1, 1))(up_conv_224) conv_final = Activation('sigmoid')(conv_final) # Generate model model = Model(inputs, conv_final, name="UNET_224") return model def append_new_line(file_name, text_to_append): """Append given text as a new line at the end of file""" # Open the file in append & read mode ('a+') with open(file_name, "a+") as file_object: # Move read cursor to the start of file. file_object.seek(0) # If file is not empty then append '\n' data = file_object.read(100) if len(data) > 0: file_object.write("\n") # Append text at the end of file file_object.write(text_to_append) def evaluate_prediction_result(location, pred_npy, mask_npy, label_npy, model_path, txt_path): prediction_npy = np.load(pred_npy) prediction_mask_npy = np.load(mask_npy) predition_label_npy = np.load(label_npy) #print("All data are loaded") dim = predition_label_npy.shape buf = 30 numr = 41 numc = (dim[0]//41)-1 count = -1 for i in range(numr): # if(location == 'covington' and i == 20): # break # Concate each column to create row ith # numc_con = int(numc/2)-1 if(location == 'covington') else numc numc_con = int(numc)-1 for j in range(numc_con): count += 1 temp = prediction_npy[count][buf:-buf,buf:-buf] if j == 0: rows = temp else: rows = np.concatenate((rows,temp),axis = 1) # Concate the row ith to the total preditcion if i == 0: prediction_map = copy.copy(rows) else: prediction_map = np.concatenate((prediction_map,rows),axis = 0) #print("prediction_map",prediction_map.shape) prediction_map = prediction_map[:,:,0] # mask mask = prediction_mask_npy[:prediction_map.shape[0],:prediction_map.shape[1]] [lr,lc] = np.where(mask == 1) # print("mask",mask.shape) # Read reference data groundtruth = predition_label_npy[:prediction_map.shape[0],:prediction_map.shape[1]] groundtruthlist = predition_label_npy[:prediction_map.shape[0],:prediction_map.shape[1]][lr,lc] prediction = np.logical_and(prediction_map,mask) predictionlist = np.logical_and(prediction_map,mask)[lr,lc] f1_nonstream = f1_score(groundtruthlist, predictionlist,labels=[0], average = 'micro') f1_stream = f1_score(groundtruthlist, predictionlist,labels=[1], average = 'micro') precision_nonstream = precision_score(groundtruthlist, predictionlist,labels=[0], average = 'micro') precision_stream = precision_score(groundtruthlist, predictionlist,labels=[1], average = 'micro') recall_nonstream = recall_score(groundtruthlist, predictionlist,labels=[0], average = 'micro') recall_stream = recall_score(groundtruthlist, predictionlist,labels=[1], average = 'micro') cohen_kappa = cohen_kappa_score(groundtruthlist, predictionlist) append_new_line(txt_path, 'Model path:' + model_path + ' Run at: ' + str(datetime.now())) append_new_line(txt_path, 'F1 score of Nonstream: '+str(f1_nonstream)) append_new_line(txt_path, 'F1 score of Stream: '+str(f1_stream)) append_new_line(txt_path, 'Precision of Nonstream: '+str(precision_nonstream)) append_new_line(txt_path, 'Precision of Stream: '+str(precision_stream)) append_new_line(txt_path, 'Recall of Nonstream: '+str(recall_nonstream)) append_new_line(txt_path, 'Recall of Stream: '+str(recall_stream)) append_new_line(txt_path, 'Cohen Kappa: '+str(cohen_kappa)) print('Model path:' + model_path + ' Run at: ' + str(datetime.now(timezone(timedelta(hours=-6), 'utc')))) print('F1 score of Nonstream: '+str(f1_nonstream)) print('F1 score of Stream: '+str(f1_stream)) print('Precision of Nonstream: '+str(precision_nonstream)) print('Precision of Stream: '+str(precision_stream)) print('Recall of Nonstream: '+str(recall_nonstream)) print('Recall of Stream: '+str(recall_stream)) print('Cohen Kappa: '+str(cohen_kappa)) data = im.fromarray(prediction.astype('float')) data.save(pred_npy[:-4]+".tif")