power.py 22.8 KB
Newer Older
Daniel Johnson's avatar
Daniel Johnson committed
1
#!/usr/bin/env python
Daniel Johnson's avatar
Daniel Johnson committed
2

Roland Haas's avatar
Roland Haas committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Copyright (c) 2017 The Board of Trustees of the University of Illinois
# All rights reserved.
#
# Developed by: Daniel Johnson, E. A. Huerta, Roland Haas
#               NCSA Gravity Group
#               National Center for Supercomputing Applications
#               University of Illinois at Urbana-Champaign
#               http://gravity.ncsa.illinois.edu/
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to
# deal with the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
# sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimers.
#
# Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimers in the documentation
# and/or other materials provided with the distribution.
#
# Neither the names of the National Center for Supercomputing Applications,
# University of Illinois at Urbana-Champaign, nor the names of its
# contributors may be used to endorse or promote products derived from this
# Software without specific prior written permission.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# WITH THE SOFTWARE.

Daniel Johnson's avatar
Daniel Johnson committed
39
40
41
42
43
44
45
# Based off of SimulationTools Mathematica Package
# http://www.simulationtools.org/

import numpy as np
import glob
import os
import h5py
46
import re
Daniel Johnson's avatar
Daniel Johnson committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import string
import math
import sys
import warnings
import scipy.optimize
import scipy.interpolate

#-----Function Definitions-----#

#Function used in getting psi4 from simulation
def joinDsets(dsets):
	"""joints multiple datasets which each have a
	time like first column, eg iteration number of
	time. Removes overlapping segments, keeping the
	last segment.

	dsets = iterable of 2d array like objects with data"""
	# joins multiple datasets of which the first column is assumed to be "time"
	if(not dsets):
		return None
	length = 0
	for d in dsets:
		length += len(d)
	newshape = list(dsets[0].shape)
	newshape[0] = length
	dset = np.empty(shape=newshape, dtype=dsets[0].dtype)
	usedlength = 0
	for d in dsets:
		insertpointidx = np.where(dset[0:usedlength,0] >= d[0,0])
		if(insertpointidx[0].size):
			insertpoint = insertpointidx[0][0]
		else:
			insertpoint = usedlength
		newlength = insertpoint+len(d)
		dset[insertpoint:newlength] = d
		usedlength = newlength
	return dset[0:usedlength]

#Function used in getting psi4 from simulation
def loadHDF5Series(nameglob, series):
	"""load HDF5 timeseries data and concatenate the content of multiple files

	nameglob = a shell glob that matches all files to be loaded,
	files are sorted alphabetically
	series = HDF5 dataset name of dataset to load from files"""
	dsets = list()
	for fn in sorted(glob.glob(nameglob)):
		fh = h5py.File(fn)
		dsets.append(fh[series])
	return joinDsets(dsets)

#Convert radial to tortoise coordinates
def RadialToTortoise(r, M):
	"""
	Convert the radial coordinate to the tortoise coordinate

	r = radial coordinate
	M = ADMMass used to convert coordinate
	return = tortoise coordinate value
	"""
	return r + 2. * M * math.log( r / (2. * M) - 1.)

#Convert modified psi4 to strain
def psi4ToStrain(mp_psi4, f0):
	"""
	Convert the input mp_psi4 data to the strain of the gravitational wave
	
	mp_psi4 = Weyl scalar result from simulation
	f0 = cutoff frequency
	return = strain (h) of the gravitational wave
	"""
	#TODO: Check for uniform spacing in time
	t0 = mp_psi4[:, 0]
	list_len = len(t0)
	complexPsi = np.zeros(list_len, dtype=np.complex_)
	complexPsi = mp_psi4[:, 1]+1.j*mp_psi4[:, 2]

	freq, psif = myFourierTransform(t0, complexPsi)
	dhf = ffi(freq, psif, f0)
	hf = ffi(freq, dhf, f0)

	time, h = myFourierTransformInverse(freq, hf, t0[0])
	hTable = np.column_stack((time, h))
	return hTable

#Fixed frequency integration
# See https://arxiv.org/abs/1508.07250 for method
def ffi(freq, data, f0):
	"""
	Integrates the data according to the input frequency and cutoff frequency

	freq = fourier transform frequency
	data = input on which ffi is performed
	f0 = cutoff frequency
	"""
	f1 = f0/(2*math.pi)
	fs = freq
	gs = data
	mask1 = (np.sign((fs/f1) - 1) + 1)/2
	mask2 = (np.sign((-fs/f1) - 1) + 1)/2
	mask = 1 - (1 - mask1) * (1 - mask2)
	fs2 = mask * fs + (1-mask) * f1 * np.sign(fs - np.finfo(float).eps)
	new_gs = gs/(2*math.pi*1.j*fs2)
	return new_gs

#Fourier Transform
def myFourierTransform(t0, complexPsi):
	"""
	Transforms the complexPsi data to frequency space

	t0 = time data points
	complexPsi = data points of Psi to be transformed
	"""
	psif = np.fft.fft(complexPsi, norm="ortho")
	l = len(complexPsi)
	n = int(math.floor(l/2))
	newpsif = psif[l-n:]
	newpsif = np.append(newpsif, psif[:l-n])
	T = np.amin(np.diff(t0))*l
	freq = range(-n, l-n)/T
	return freq, newpsif

#Inverse Fourier Transform
def myFourierTransformInverse(freq, hf, t0):
	l = len(hf)
	n = int(math.floor(l/2))
	newhf = hf[n:]
	newhf = np.append(newhf, hf[:n])
	amp = np.fft.ifft(newhf, norm="ortho")
	df = np.amin(np.diff(freq))
	time = t0 + range(0, l)/(df*l)
	return time, amp

def angular_momentum(x, q, m, chi1, chi2, LInitNR):
	eta = q/(1.+q)**2.
	m1 = (1.+(1.-4.*eta)**0.5)/2.
	m2 = m - m1
	S1 = m1**2. * chi1
	S2 = m2**2. * chi2
	Sl = S1+S2
	Sigmal = S2/m2 - S1/m1
	DeltaM = m1 - m2
	mu = eta
	nu = eta
	GammaE = 0.5772156649;
	e4 = -(123671./5760.)+(9037.* math.pi**2.)/1536.+(896.*GammaE)/15.+(-(498449./3456.)+(3157.*math.pi**2.)/576.)*nu+(301. * nu**2.)/1728.+(77.*nu**3.)/31104.+(1792. *math.log(2.))/15.
	e5 = -55.13
	j4 = -(5./7.)*e4+64./35.
	j5 = -(2./3.)*e5-4988./945.-656./135. * eta;
	a1 = -2.18522;
	a2 = 1.05185;
	a3 = -2.43395;
	a4 = 0.400665;
	a5 = -5.9991;
	CapitalDelta = (1.-4.*eta)**0.5

	l = (eta/x**(1./2.)*(
		1. +
		x*(3./2. + 1./6.*eta) + 
        x**2. *(27./8. - 19./8.*eta + 1./24.*eta**2.) + 
        x**3. *(135./16. + (-6889./144. + 41./24. * math.pi**2.)*eta + 31./24.*eta**2. + 7./1296.*eta**3.) + 
        x**4. *((2835./128.) + eta*j4 - (64.*eta*math.log(x)/3.))+ 
        x**5. *((15309./256.) + eta*j5 + ((9976./105.) + (1312.*eta/15.))*eta*math.log(x))+
        x**(3./2.)*(-(35./6.)*Sl - 5./2.*DeltaM* Sigmal) + 
        x**(5./2.)*((-(77./8.) + 427./72.*eta)*Sl + DeltaM* (-(21./8.) + 35./12.*eta)*Sigmal) + 
        x**(7./2.)*((-(405./16.) + 1101./16.*eta - 29./16.*eta**2.)*Sl + DeltaM*(-(81./16.) + 117./4.*eta - 15./16.*eta**2.)*Sigmal) + 
        (1./2. + (m1 - m2)/2. - eta)* chi1**2. * x**2. +
        (1./2. + (m2 - m1)/2. - eta)* chi2**2. * x**2. + 
        2.*eta*chi1*chi2*x**2. +
        ((13.*chi1**2.)/9. +
        (13.*CapitalDelta*chi1**2.)/9. -
        (55.*nu*chi1**2.)/9. - 
        29./9.*CapitalDelta*nu*chi1**2. + 
        (14.*nu**2. *chi1**2.)/9. +
        (7.*nu*chi1*chi2)/3. +
        17./18.* nu**2. * chi1 * chi2 + 
        (13.* chi2**2.)/9. -
        (13.*CapitalDelta*chi2**2.)/9. -
        (55.*nu*chi2**2.)/9. +
        29./9.*CapitalDelta*nu*chi2**2. +
        (14.*nu**2. * chi2**2.)/9.)
        * x**3.))
	return l - LInitNR

#Get cutoff frequency
def getCutoffFrequency(sim_name):
	"""
	Determine cutoff frequency of simulation

	sim_name = string of simulation
	return = cutoff frequency
	"""
	filename = main_dir+"/output-0000/%s.par" % (sim_name)
	with open(filename) as file:
		contents = file.readlines()
		for line in contents:
			line_elems = line.split(" ")
			if(line_elems[0] == "TwoPunctures::par_b"):
				par_b = float(line_elems[-1])
			if(line_elems[0] == "TwoPunctures::center_offset[0]"):
				center_offset = float(line_elems[-1])
			if(line_elems[0] == "TwoPunctures::par_P_plus[1]"):
				pyp = float(line_elems[-1])
			if(line_elems[0] == "TwoPunctures::par_P_minus[1]"):
				pym = float(line_elems[-1])
			if(line_elems[0] == "TwoPunctures::target_M_plus"):
				m1 = float(line_elems[-1])
			if(line_elems[0] == "TwoPunctures::target_M_minus"):
				m2 = float(line_elems[-1])
			if(line_elems[0] == "TwoPunctures::par_S_plus[2]"):
				S1 = float(line_elems[-1])
			if(line_elems[0] == "TwoPunctures::par_S_minus[2]"):
				S2 = float(line_elems[-1])

	xp = par_b + center_offset
	xm = -1*par_b + center_offset
	LInitNR = xp*pyp + xm*pym
	M = m1+m2
	q = m1/m2
	chi1 = S1/math.pow(m1, 2.)
	chi2 = S2/math.pow(m2, 2.)
	# .014 is the initial guess for cutoff frequency
	omOrbPN = scipy.optimize.fsolve(angular_momentum, .014, (q, M, chi1, chi2, LInitNR))[0]
	omOrbPN = omOrbPN**(3./2.)
	omGWPN = 2. * omOrbPN
	omCutoff = 0.75 * omGWPN
	return omCutoff

275
276
277
278
279
280
281
282
283
284
285
#Get Energy
def get_energy(sim):
	"""
	Save the energy radiated energy
	sim = string of simulation
	"""
	python_strain = np.loadtxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l2_m2.dat")
	val = np.zeros(len(python_strain))
	val = val.astype(np.complex_)
	cur_max_time = python_strain[0][0]
	cur_max_amp = abs(pow(python_strain[0][1], 2))
Roland Haas's avatar
Roland Haas committed
286
	# TODO: rewrite as array operations (use numpy.argmax)
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
	for i in python_strain[:]:
		cur_time = i[0]
		cur_amp = abs(pow(i[1], 2))
		if(cur_amp>cur_max_amp):
			cur_max_amp = cur_amp
			cur_max_time = cur_time

	max_idx = 0
	for i in range(0, len(python_strain[:])):
		if(python_strain[i][1] > python_strain[max_idx][1]):
			max_idx = i

	paths = glob.glob("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l[2-4]_m*.dat")
	for path in paths:
		python_strain = np.loadtxt(path)

		t = python_strain[:, 0]
		t = t.astype(np.complex_)
		h = python_strain[:, 1] + 1j * python_strain[:, 2]
		dh = np.zeros(len(t), dtype=np.complex_) 
		for i in range(0, len(t)-1):
			dh[i] = ((h[i+1] - h[i])/(t[i+1] - t[i]))
		dh[len(t)-1] = dh[len(t)-2]

		dh_conj = np.conj(dh)
		prod = np.multiply(dh, dh_conj)
		local_val = np.zeros(len(t))
		local_val = local_val.astype(np.complex_)
Roland Haas's avatar
Roland Haas committed
315
                # TODO: rewrite as array notation using numpy.cumtrapz
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
		for i in range(0, len(t)):
			local_val[i] = np.trapz(prod[:i], x=(t[:i]))
		val += local_val
		
	val *= 1/(16 * math.pi)
	np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_energy.dat", val)

#Get angular momentum
def get_angular_momentum(python_strain):
	"""
	Save the energy radiated angular momentum
	sim = string of simulation
	"""
	python_strain = np.loadtxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l2_m2.dat")
	val = np.zeros(len(python_strain))
	val = val.astype(np.complex_)
	cur_max_time = python_strain[0][0]
	cur_max_amp = abs(pow(python_strain[0][1], 2))
Roland Haas's avatar
Roland Haas committed
334
	# TODO: rewrite as array operations (use numpy.argmax)
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
	for i in python_strain[:]:
		cur_time = i[0]
		cur_amp = abs(pow(i[1], 2))
		if(cur_amp>cur_max_amp):
			cur_max_amp = cur_amp
			cur_max_time = cur_time

	max_idx = 0
	for i in range(0, len(python_strain[:])):
		if(python_strain[i][1] > python_strain[max_idx][1]):
			max_idx = i

	paths = glob.glob("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l[2-4]_m*.dat")
	for path in paths:
		python_strain = np.loadtxt(path)

		t = python_strain[:, 0]
		t = t.astype(np.complex_)
		h = python_strain[:, 1] + 1j * python_strain[:, 2]
		dh = np.zeros(len(t), dtype=np.complex_) 
Roland Haas's avatar
Roland Haas committed
355
                # TODO: rewrite using array notation
356
357
358
359
360
361
362
363
		for i in range(0, len(t)-1):
			dh[i] = ((h[i+1] - h[i])/(t[i+1] - t[i]))
		dh[len(t)-1] = dh[len(t)-2]

		dh_conj = np.conj(dh)
		prod = np.multiply(h, dh_conj)
		local_val = np.zeros(len(t))
		local_val = local_val.astype(np.complex_)
Roland Haas's avatar
Roland Haas committed
364
                # TODO: rewrite as array notation using numpy.cumtrapz. Move atoi call out of inner loop.
365
366
367
368
369
370
		for i in range(0, len(t)):
			local_val[i] = np.trapz(prod[:i], x=(t[:i])) * int(((path.split("_")[-1]).split("m")[-1]).split(".")[0])
		val += local_val
		
	val *= 1/(16 * math.pi)
	np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_angular_momentum.dat", val)
Daniel Johnson's avatar
Daniel Johnson committed
371
372
373

#-----Main-----#

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
if __name__ == "__main__":
    #Initialize simulation data
    if(len(sys.argv) < 2):
            print("Pass in the number n of the n innermost detector radii to be used in the extrapolation (optional, default=all) and the simulation folders (e.g., ./power.py 6 ./simulations/J0040_N40 /path/to/my_simulation_folder).")
            sys.exit()
    elif(os.path.isdir(sys.argv[1])):
            radiiUsedForExtrapolation = 7	#use the first n radii available
            paths = sys.argv[1:]
    elif(not os.path.isdir(sys.argv[1])):
            radiiUsedForExtrapolation = int(sys.argv[1])	#use the first n radii available
            if(radiiUsedForExtrapolation < 1 or radiiUsedForExtrapolation > 7):
                    print("Invalid specified radii number")
                    sys.exit()
            paths = sys.argv[2:]

    for sim_path in paths:
            main_dir = sim_path
            sim = sim_path.split("/")[-1]

            simdirs = main_dir+"/output-????/%s/" % (sim)
            f0 = getCutoffFrequency(sim)

            #Check if necessary files exist
            par_file = main_dir+"/output-0000/%s.par" % (sim)
            two_punctures_file = main_dir+"/output-0000/%s/TwoPunctures.bbh" % (sim)
            if(not os.path.isfile(par_file) or not os.path.isfile(two_punctures_file)):
                    continue

            #Create data directories
            main_directory = "Extrapolated_Strain"
            sim_dir = main_directory+"/"+sim
            if not os.path.exists(main_directory):
                    os.makedirs(main_directory)
            if not os.path.exists(sim_dir):
                    os.makedirs(sim_dir)

            #Get ADMMass
            ADMMass = -1
            filename = main_dir+"/output-0000/%s/TwoPunctures.bbh" % (sim)
            with open(filename) as file:
                    contents = file.readlines()
                    for line in contents:
                            line_elems = line.split(" ")
                            if(line_elems[0] == "initial-ADM-energy"):
                                    ADMMass = float(line_elems[-1])

            # TODO: fix this. It will fail if output-0000 does not contain any mp
            # output and also will open the output files multiple times
            fn = sorted(glob.glob(simdirs+"mp_psi4.h5"))[0]
            with h5py.File(fn, "r") as fh:
                    # get all radii
                    radii = set()
                    modes = set()
                    dsets = dict()
                    for dset in fh:
                            # TODO: extend Multipole to save the radii as attributes and/or
                            # use a group structure in the hdf5 file
                            m = re.match(r'l(\d*)_m(-?\d*)_r(\d*\.\d)', dset)
                            if m:
                                    radius = float(m.group(3))
                                    mode = (int(m.group(1)), int(m.group(2)))
                                    modes.add(mode)
                                    radii.add(radius)
                                    dsets[(radius, mode)] = dset
                    modes = sorted(modes)
                    radii = sorted(radii)

            #Get Psi4
            for (l,m) in modes:
                    mp_psi4_vars = []
                    for radius in radii:
                            psi4dsetname = dsets[(radius, (l,m))]
                            mp_psi4 = loadHDF5Series(simdirs+"mp_psi4.h5", psi4dsetname)
                            mp_psi4_vars.append(mp_psi4)

                    #Get Tortoise Coordinate
                    tortoise = []
                    for radius in radii:
                            tortoise.append(-RadialToTortoise(radius, ADMMass))

                    strain = []
                    phase = []
                    amp = []
                    for i in range(len(radii)):
                            #Get modified Psi4 (Multiply real and imaginary psi4 columns by radii and add the tortoise coordinate to the time colum)
                            mp_psi4_vars[i][:, 0] += tortoise[i]
                            mp_psi4_vars[i][:, 1] *= radii[i]
                            mp_psi4_vars[i][:, 2] *= radii[i]

                            #Check for psi4 amplitude going to zero
                            cur_psi4_amp = (mp_psi4_vars[i][0, 1]**2 + mp_psi4_vars[i][0, 2]**2)**(1/2)
                            min_psi4_amp = cur_psi4_amp
                            # TODO: use array notatino for this since it finds the minimum amplitude
                            for j in range(0, len(mp_psi4_vars[i][:, 0])):
                                    cur_psi4_amp = (mp_psi4_vars[i][j, 1]**2 + mp_psi4_vars[i][j, 2]**2)**(1/2)
                                    if(cur_psi4_amp < min_psi4_amp):
                                            min_psi4_amp = cur_psi4_amp
                            if(min_psi4_amp < np.finfo(float).eps and l >= 2):
                                    print("The psi4 amplitude is near zero. The phase is ill-defined.")

                            #Fixed-frequency integration twice to get strain
                            hTable = psi4ToStrain(mp_psi4_vars[i], f0)
                            time = hTable[:, 0]
                            h = hTable[:, 1]
                            hplus = h.real
                            hcross = h.imag
                            newhTable = np.column_stack((time, hplus, hcross))
                            warnings.filterwarnings('ignore')
                            finalhTable = newhTable.astype(float)
                            np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_strain_at_"+str(radii[i])+"_l"+str(l)+"_m"+str(m)+".dat", finalhTable)
                            strain.append(finalhTable)

                            #Get phase and amplitude of strain
                            h_phase = np.unwrap(np.angle(h))
                            while(h_phase[0] < 0):
                                    h_phase[:] += 2*math.pi
                            angleTable = np.column_stack((time, h_phase))
                            angleTable = angleTable.astype(float)
                            phase.append(angleTable)
                            h_amp = np.absolute(h)
                            ampTable = np.column_stack((time, h_amp))
                            ampTable = ampTable.astype(float)
                            amp.append(ampTable)

                    #Interpolate phase and amplitude
                    t = phase[0][:, 0]
                    last_t = phase[radiiUsedForExtrapolation - 1][-1, 0]
                    last_index = 0;
                    # TODO: use array notation for this (this is a boolean
                    # plus a first_of or so)
                    for i in range(0, len(phase[0][:, 0])):
                            if(t[i] > last_t):
                                    last_index = i
                                    break
                    last_index = last_index-1
                    t = phase[0][0:last_index, 0]
                    dts = t[1:] - t[:-1]
                    dt = float(np.amin(dts))
                    t = np.arange(phase[0][0, 0], phase[0][last_index, 0], dt)
                    interpolation_order = 9
                    for i in range(0, radiiUsedForExtrapolation):
                            interp_function = scipy.interpolate.interp1d(phase[i][:, 0], phase[i][:, 1], kind=interpolation_order)
                            resampled_phase_vals = interp_function(t)
                            while(resampled_phase_vals[0] < 0):
                                    resampled_phase_vals[:] += 2*math.pi
                            phase[i] = np.column_stack((t, resampled_phase_vals))
                            interp_function = scipy.interpolate.interp1d(amp[i][:, 0], amp[i][:, 1], kind=interpolation_order)
                            resampled_amp_vals = interp_function(t)
                            amp[i] = np.column_stack((t, resampled_amp_vals))

                    #Extrapolate
                    phase_extrapolation_order = 1
                    amp_extrapolation_order = 2
                    radii = np.asarray(radii, dtype=float)
                    radii = radii[0:radiiUsedForExtrapolation]
                    # TODO: replace by np.ones (which is all it does anyway)
                    A_phase = np.power(radii, 0)
                    A_amp = np.power(radii, 0)
                    for i in range(1, phase_extrapolation_order+1):
                            A_phase = np.column_stack((A_phase, np.power(radii, -1*i)))

                    for i in range(1, amp_extrapolation_order+1):
                            A_amp = np.column_stack((A_amp, np.power(radii, -1*i)))

                    radially_extrapolated_phase = np.empty(0)
                    radially_extrapolated_amp = np.empty(0)
                    for i in range(0, len(t)):
                            b_phase = np.empty(0)
                            for j in range(0, radiiUsedForExtrapolation):
                                    b_phase = np.append(b_phase, phase[j][i, 1])
                            x_phase = np.linalg.lstsq(A_phase, b_phase)[0]
                            radially_extrapolated_phase = np.append(radially_extrapolated_phase, x_phase[0])

                            b_amp = np.empty(0)
                            for j in range(0, radiiUsedForExtrapolation):
                                    b_amp = np.append(b_amp, amp[j][i, 1])
                            x_amp = np.linalg.lstsq(A_amp, b_amp)[0]
                            radially_extrapolated_amp = np.append(radially_extrapolated_amp, x_amp[0])

                    radially_extrapolated_h_plus = np.empty(0)
                    radially_extrapolated_h_cross = np.empty(0)
                    for i in range(0, len(radially_extrapolated_amp)):
                            radially_extrapolated_h_plus = np.append(radially_extrapolated_h_plus, radially_extrapolated_amp[i] * math.cos(radially_extrapolated_phase[i]))
                            radially_extrapolated_h_cross = np.append(radially_extrapolated_h_cross, radially_extrapolated_amp[i] * math.sin(radially_extrapolated_phase[i]))

                    np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_strain_l"+str(l)+"_m"+str(m)+".dat", np.column_stack((t, radially_extrapolated_h_plus, radially_extrapolated_h_cross)))
                    np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_amplitude_l"+str(l)+"_m"+str(m)+".dat", np.column_stack((t, radially_extrapolated_amp)))
                    np.savetxt("./Extrapolated_Strain/"+sim+"/"+sim+"_radially_extrapolated_phase_l"+str(l)+"_m"+str(m)+".dat", np.column_stack((t, radially_extrapolated_phase[:])))

            get_energy(sim)
            get_angular_momentum(sim)